These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 39404057)

  • 21. Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks.
    Baul S; Tanvir Ahmed K; Jiang Q; Wang G; Li Q; Yong J; Zhang W
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SPANN: annotating single-cell resolution spatial transcriptome data with scRNA-seq data.
    Yuan M; Wan H; Wang Z; Guo Q; Deng M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38279647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology.
    Saviano A; Henderson NC; Baumert TF
    J Hepatol; 2020 Nov; 73(5):1219-1230. PubMed ID: 32534107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve.
    Zhou Z; Zhong Y; Zhang Z; Ren X
    Nat Commun; 2023 Dec; 14(1):7930. PubMed ID: 38040768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration tools for scRNA-seq data and spatial transcriptomics sequencing data.
    Yan C; Zhu Y; Chen M; Yang K; Cui F; Zou Q; Zhang Z
    Brief Funct Genomics; 2024 Jul; 23(4):295-302. PubMed ID: 38267084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial transcriptomics at subspot resolution with BayesSpace.
    Zhao E; Stone MR; Ren X; Guenthoer J; Smythe KS; Pulliam T; Williams SR; Uytingco CR; Taylor SEB; Nghiem P; Bielas JH; Gottardo R
    Nat Biotechnol; 2021 Nov; 39(11):1375-1384. PubMed ID: 34083791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Methods for Demystifying Spatial Transcriptomics.
    Sammeth M; Mudra S; Bialdiga S; Hartmannsberger B; Kramer S; Rittner H
    Methods Mol Biol; 2024; 2802():515-546. PubMed ID: 38819570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry.
    Zhang Q; Jiang S; Schroeder A; Hu J; Li K; Zhang B; Dai D; Lee EB; Xiao R; Li M
    Nat Commun; 2023 Jul; 14(1):4050. PubMed ID: 37422469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Primer on Preprocessing, Visualization, Clustering, and Phenotyping of Barcode-Based Spatial Transcriptomics Data.
    Ospina O; Soupir A; Fridley BL
    Methods Mol Biol; 2023; 2629():115-140. PubMed ID: 36929076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate and efficient integrative reference-informed spatial domain detection for spatial transcriptomics.
    Ma Y; Zhou X
    Nat Methods; 2024 Jul; 21(7):1231-1244. PubMed ID: 38844627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SpatialCTD: A Large-Scale Tumor Microenvironment Spatial Transcriptomic Dataset to Evaluate Cell Type Deconvolution for Immuno-Oncology.
    Ding J; Li L; Lu Q; Venegas J; Wang Y; Wu L; Jin W; Wen H; Liu R; Tang W; Dai X; Li Z; Zuo W; Chang Y; Lei YL; Shang L; Danaher P; Xie Y; Tang J
    J Comput Biol; 2024 Sep; 31(9):871-885. PubMed ID: 39117342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets.
    Maden SK; Kwon SH; Huuki-Myers LA; Collado-Torres L; Hicks SC; Maynard KR
    Genome Biol; 2023 Dec; 24(1):288. PubMed ID: 38098055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics.
    Li H; Zhou J; Li Z; Chen S; Liao X; Zhang B; Zhang R; Wang Y; Sun S; Gao X
    Nat Commun; 2023 Mar; 14(1):1548. PubMed ID: 36941264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-cell and spatial transcriptomics approaches of cardiovascular development and disease.
    Roth R; Kim S; Kim J; Rhee S
    BMB Rep; 2020 Aug; 53(8):393-399. PubMed ID: 32684243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography.
    Andersson A; Bergenstråhle J; Asp M; Bergenstråhle L; Jurek A; Fernández Navarro J; Lundeberg J
    Commun Biol; 2020 Oct; 3(1):565. PubMed ID: 33037292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology.
    Zhu S; Kubota N; Wang S; Wang T; Xiao G; Hoshida Y
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data.
    Shan X; Chen J; Dong K; Zhou W; Zhang S
    J Comput Biol; 2022 Jul; 29(7):650-663. PubMed ID: 35727094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inferring histology-associated gene expression gradients in spatial transcriptomic studies.
    Kueckelhaus J; Frerich S; Kada-Benotmane J; Koupourtidou C; Ninkovic J; Dichgans M; Beck J; Schnell O; Heiland DH
    Nat Commun; 2024 Aug; 15(1):7280. PubMed ID: 39179527
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deconvolving the contributions of cell-type heterogeneity on cortical gene expression.
    Patrick E; Taga M; Ergun A; Ng B; Casazza W; Cimpean M; Yung C; Schneider JA; Bennett DA; Gaiteri C; De Jager PL; Bradshaw EM; Mostafavi S
    PLoS Comput Biol; 2020 Aug; 16(8):e1008120. PubMed ID: 32804935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.