These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. Genetic deletion of TNFR2 augments inflammatory response and blunts satellite-cell-mediated recovery response in a hind limb ischemia model. Sasi SP; Rahimi L; Yan X; Silver M; Qin G; Losordo DW; Kishore R; Goukassian DA FASEB J; 2015 Apr; 29(4):1208-19. PubMed ID: 25466901 [TBL] [Abstract][Full Text] [Related]
27. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice. Bréchot N; Gomez E; Bignon M; Khallou-Laschet J; Dussiot M; Cazes A; Alanio-Bréchot C; Durand M; Philippe J; Silvestre JS; Van Rooijen N; Corvol P; Nicoletti A; Chazaud B; Germain S PLoS One; 2008; 3(12):e3950. PubMed ID: 19079608 [TBL] [Abstract][Full Text] [Related]
28. Loss of c-Kit function impairs arteriogenesis in a mouse model of hindlimb ischemia. Hernandez DR; Artiles A; Duque JC; Martinez L; Pinto MT; Webster KA; Velazquez OC; Vazquez-Padron RI; Lassance-Soares RM Surgery; 2018 Apr; 163(4):877-882. PubMed ID: 29287914 [TBL] [Abstract][Full Text] [Related]
29. P2Y2 nucleotide receptor mediates arteriogenesis in a murine model of hind limb ischemia. McEnaney RM; Shukla A; Madigan MC; Sachdev U; Tzeng E J Vasc Surg; 2016 Jan; 63(1):216-25. PubMed ID: 25088742 [TBL] [Abstract][Full Text] [Related]
30. Cyclophilin A modulates bone marrow-derived CD117(+) cells and enhances ischemia-induced angiogenesis via the SDF-1/CXCR4 axis. Perrucci GL; Straino S; Corlianò M; Scopece A; Napolitano M; Berk BC; Lombardi F; Pompilio G; Capogrossi MC; Nigro P Int J Cardiol; 2016 Jun; 212():324-35. PubMed ID: 27057951 [TBL] [Abstract][Full Text] [Related]
31. Repetitive remote occlusion (RRO) stimulates eNOS-dependent blood flow and collateral expansion in hindlimb ischemia. Schuler D; Sansone R; Nicolaus C; Kelm M; Heiss C Free Radic Biol Med; 2018 Dec; 129():520-531. PubMed ID: 30336250 [TBL] [Abstract][Full Text] [Related]
32. Cardio-protective effects of pentraxin 3 produced from bone marrow-derived cells against ischemia/reperfusion injury. Shimizu T; Suzuki S; Sato A; Nakamura Y; Ikeda K; Saitoh S; Misaka S; Shishido T; Kubota I; Takeishi Y J Mol Cell Cardiol; 2015 Dec; 89(Pt B):306-13. PubMed ID: 26470821 [TBL] [Abstract][Full Text] [Related]
33. Glyoxalase-1 overexpression in bone marrow cells reverses defective neovascularization in STZ-induced diabetic mice. Vulesevic B; McNeill B; Geoffrion M; Kuraitis D; McBane JE; Lochhead M; Vanderhyden BC; Korbutt GS; Milne RW; Suuronen EJ Cardiovasc Res; 2014 Feb; 101(2):306-16. PubMed ID: 24259499 [TBL] [Abstract][Full Text] [Related]
34. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy. Nammian P; Asadi-Yousefabad SL; Daneshi S; Sheikhha MH; Tabei SMB; Razban V Stem Cell Res Ther; 2021 Jan; 12(1):58. PubMed ID: 33436054 [TBL] [Abstract][Full Text] [Related]
35. Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation. Fan W; Han D; Sun Z; Ma S; Gao L; Chen J; Li X; Li X; Fan M; Li C; Hu D; Wang Y; Cao F Free Radic Biol Med; 2017 Jul; 108():725-740. PubMed ID: 28473248 [TBL] [Abstract][Full Text] [Related]
36. The impact of ischemic stroke on bone marrow microenvironment and extracellular vesicles: A study on inflammatory and molecular changes. Patel S; Khan MB; Kumar S; Vyavahare S; Mendhe B; Lee TJ; Cai J; Isales CM; Liu Y; Hess DC; Fulzele S Exp Neurol; 2024 Sep; 379():114867. PubMed ID: 38914274 [TBL] [Abstract][Full Text] [Related]
37. Human Bone Marrow Mononuclear Cells Do Not Improve Limb Perfusion in the Hindlimb Ischemia Model. van Rhijn-Brouwer FCC; Gremmels H; Den Ouden K; Teraa M; Fledderus JO; Verhaar MC Stem Cells Dev; 2022 Apr; 31(7-8):176-180. PubMed ID: 35152731 [TBL] [Abstract][Full Text] [Related]
38. The Role of Vascular Endothelial Growth Factor Receptor-1 Signaling in the Recovery from Ischemia. Amano H; Kato S; Ito Y; Eshima K; Ogawa F; Takahashi R; Sekiguchi K; Tamaki H; Sakagami H; Shibuya M; Majima M PLoS One; 2015; 10(7):e0131445. PubMed ID: 26133989 [TBL] [Abstract][Full Text] [Related]
39. Compromised regulation of tissue perfusion and arteriogenesis limit, in an AT1R-independent fashion, recovery of ischemic tissue in Cx40(-/-) mice. Fang JS; Angelov SN; Simon AM; Burt JM Am J Physiol Heart Circ Physiol; 2013 Mar; 304(6):H816-27. PubMed ID: 23292716 [TBL] [Abstract][Full Text] [Related]
40. Concomitant overexpression of triple antioxidant enzymes selectively increases circulating endothelial progenitor cells in mice with limb ischaemia. Liu L; Cui Y; Li X; Que X; Xiao Y; Yang C; Zhang J; Xie X; Cowan PJ; Tian J; Hao H; Liu Z J Cell Mol Med; 2019 Jun; 23(6):4019-4029. PubMed ID: 30973215 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]