These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39405876)
21. Methane flux dynamics in a submerged aquatic vegetation zone in a subtropical lake. Zhang M; Xiao Q; Zhang Z; Gao Y; Zhao J; Pu Y; Wang W; Xiao W; Liu S; Lee X Sci Total Environ; 2019 Jul; 672():400-409. PubMed ID: 30965256 [TBL] [Abstract][Full Text] [Related]
22. Temporal and spatial variations of air-sea CO Liu S; Liang J; Jiang Z; Li J; Wu Y; Fang Y; Ren Y; Zhang X; Huang X; Macreadie PI Sci Total Environ; 2024 Feb; 910():168684. PubMed ID: 37981158 [TBL] [Abstract][Full Text] [Related]
23. [Analysis of Greenhouse Gas Emission Characteristics and Their Influencing Factors in the Algae Zone of Lake Taihu]. Jia L; Pu YN; Yang SJ; Su RM; Qin ZH; Zhang M Huan Jing Ke Xue; 2018 May; 39(5):2316-2329. PubMed ID: 29965533 [TBL] [Abstract][Full Text] [Related]
24. Drivers of spatial and seasonal variations of CO Sun H; Yu R; Liu X; Cao Z; Li X; Zhang Z; Wang J; Zhuang S; Ge Z; Zhang L; Sun L; Lorke A; Yang J; Lu C; Lu X Water Res; 2022 Aug; 222():118916. PubMed ID: 35921715 [TBL] [Abstract][Full Text] [Related]
25. Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin. Wang H; Jiao R; Wang F; Zhang L; Yan W Environ Pollut; 2016 Dec; 219():714-723. PubMed ID: 27431697 [TBL] [Abstract][Full Text] [Related]
26. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. Sturtevant CS; Oechel WC Glob Chang Biol; 2013 Sep; 19(9):2853-66. PubMed ID: 23649775 [TBL] [Abstract][Full Text] [Related]
27. Effects of turbulence on carbon emission in shallow lakes. Zhu L; Qin B; Zhou J; Van Dam B; Shi W J Environ Sci (China); 2018 Jul; 69():166-172. PubMed ID: 29941252 [TBL] [Abstract][Full Text] [Related]
28. Re-estimating China's lake CO Wen Z; Shang Y; Lyu L; Tao H; Liu G; Fang C; Li S; Song K Environ Sci Ecotechnol; 2024 May; 19():100337. PubMed ID: 38107556 [TBL] [Abstract][Full Text] [Related]
29. Assessment of carbon flux gradients and dominant processes in a subtropical highly urbanized coastal ecosystem. Jiang N; Sun W; Chen Z; Xiong X; Wang Y; Zeng S Sci Total Environ; 2024 Nov; 952():175855. PubMed ID: 39214352 [TBL] [Abstract][Full Text] [Related]
30. A simplified approach to detect a significant carbon dioxide reduction by phytoplankton in lakes and rivers on a regional and global scale. Engel F; Attermeyer K; Weyhenmeyer GA Naturwissenschaften; 2020 Jun; 107(4):29. PubMed ID: 32577913 [TBL] [Abstract][Full Text] [Related]
31. Lake metabolic processes and their effects on the carbonate weathering CO He H; Wang Y; Liu Z; Bao Q; Wei Y; Chen C; Sun H Water Res; 2022 Aug; 222():118907. PubMed ID: 35944408 [TBL] [Abstract][Full Text] [Related]
32. Spatiotemporal Patterns in pCO Xu J; Zhou Z; Chen J; Zhuo H; Ma J; Liu Y Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231452 [TBL] [Abstract][Full Text] [Related]
33. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China. Zhang L; Sun R; Xu Z; Qiao C; Jiang G PLoS One; 2015; 10(3):e0120660. PubMed ID: 25803840 [TBL] [Abstract][Full Text] [Related]
34. Unexpected low CO Wang G; Liu S; Sun S; Xia X Environ Res; 2023 Oct; 235():116689. PubMed ID: 37474095 [TBL] [Abstract][Full Text] [Related]
35. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters. Engel F; Farrell KJ; McCullough IM; Scordo F; Denfeld BA; Dugan HA; de Eyto E; Hanson PC; McClure RP; Nõges P; Nõges T; Ryder E; Weathers KC; Weyhenmeyer GA Naturwissenschaften; 2018 Mar; 105(3-4):25. PubMed ID: 29582138 [TBL] [Abstract][Full Text] [Related]
36. Interannual, summer, and diel variability of CH Eugster W; DelSontro T; Shaver GR; Kling GW Environ Sci Process Impacts; 2020 Nov; 22(11):2181-2198. PubMed ID: 33078814 [TBL] [Abstract][Full Text] [Related]
37. Phosphorus removal by aquatic vegetation in shallow eutrophic lakes: a laboratory study. Wu D; Shen C; Cheng Y; Ding J; Li W Environ Sci Pollut Res Int; 2023 Feb; 30(6):16166-16177. PubMed ID: 36178654 [TBL] [Abstract][Full Text] [Related]
38. Global historical trends and drivers of submerged aquatic vegetation quantities in lakes. Botrel M; Maranger R Glob Chang Biol; 2023 May; 29(9):2493-2509. PubMed ID: 36786043 [TBL] [Abstract][Full Text] [Related]
39. Inland waters and their role in the carbon cycle of Alaska. Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236 [TBL] [Abstract][Full Text] [Related]
40. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going? Pilla RM; Griffiths NA; Gu L; Kao SC; McManamay R; Ricciuto DM; Shi X Glob Chang Biol; 2022 Oct; 28(19):5601-5629. PubMed ID: 35856254 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]