These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 39406146)
1. A black tea quality testing method for scale production using CV and NIRS with TCN for spectral feature extraction. Liang J; Guo J; Xia H; Ma C; Qiao X Food Chem; 2025 Feb; 464(Pt 1):141567. PubMed ID: 39406146 [TBL] [Abstract][Full Text] [Related]
2. Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors. Song Y; Wang X; Xie H; Li L; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119522. PubMed ID: 33582437 [TBL] [Abstract][Full Text] [Related]
3. Rapid discrimination of quality grade of black tea based on near-infrared spectroscopy (NIRS), electronic nose (E-nose) and data fusion. Xia H; Chen W; Hu D; Miao A; Qiao X; Qiu G; Liang J; Guo W; Ma C Food Chem; 2024 May; 440():138242. PubMed ID: 38154280 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Dianhong black tea quality using near-infrared hyperspectral imaging technology. Ren G; Wang Y; Ning J; Zhang Z J Sci Food Agric; 2021 Mar; 101(5):2135-2142. PubMed ID: 32981110 [TBL] [Abstract][Full Text] [Related]
5. The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by near-infrared reflectance spectroscopy. Lee MS; Hwang YS; Lee J; Choung MG Food Chem; 2014 Sep; 158():351-7. PubMed ID: 24731354 [TBL] [Abstract][Full Text] [Related]
6. Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection. Ren G; Wang Y; Ning J; Zhang Z Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 230():118079. PubMed ID: 31982655 [TBL] [Abstract][Full Text] [Related]
7. Micro-NIR spectrometer for quality assessment of tea: Comparison of local and global models. Wang YJ; Li TH; Li LQ; Ning JM; Zhang ZZ Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118403. PubMed ID: 32361319 [TBL] [Abstract][Full Text] [Related]
8. [Fast Detection of Camellia Sinensis Growth Process and Tea Quality Informations with Spectral Technology: A Review]. Peng JY; Song XL; Liu F; Bao YD; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):775-82. PubMed ID: 27400523 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of matcha tea quality index using portable NIR spectroscopy coupled with chemometric algorithms. Wang J; Zareef M; He P; Sun H; Chen Q; Li H; Ouyang Q; Guo Z; Zhang Z; Xu D J Sci Food Agric; 2019 Aug; 99(11):5019-5027. PubMed ID: 30977141 [TBL] [Abstract][Full Text] [Related]
10. Cognitive spectroscopy for evaluating Chinese black tea grades (Camellia sinensis): near-infrared spectroscopy and evolutionary algorithms. Ren G; Sun Y; Li M; Ning J; Zhang Z J Sci Food Agric; 2020 Aug; 100(10):3950-3959. PubMed ID: 32329077 [TBL] [Abstract][Full Text] [Related]
11. Intelligent evaluation of taste constituents and polyphenols-to-amino acids ratio in matcha tea powder using near infrared spectroscopy. Guo Z; Barimah AO; Yin L; Chen Q; Shi J; El-Seedi HR; Zou X Food Chem; 2021 Aug; 353():129372. PubMed ID: 33725540 [TBL] [Abstract][Full Text] [Related]
12. Comprehensive analysis of fresh tea (Camellia sinensis cv. Lingtou Dancong) leaf quality under different nitrogen fertilization regimes. Qiu Z; Liao J; Chen J; Li A; Lin M; Liu H; Huang W; Sun B; Liu J; Liu S; Zheng P Food Chem; 2024 May; 439():138127. PubMed ID: 38064834 [TBL] [Abstract][Full Text] [Related]
13. Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system. Jin G; Wang YJ; Li M; Li T; Huang WJ; Li L; Deng WW; Ning J Food Chem; 2021 Oct; 358():129815. PubMed ID: 33915424 [TBL] [Abstract][Full Text] [Related]
14. Detecting bioactive compound contents in Dancong tea using VNIR-SWIR hyperspectral imaging and KRR model with a refined feature wavelength method. Long T; Tang X; Liang C; Wu B; Huang B; Lan Y; Xu H; Liu S; Long Y Food Chem; 2024 Dec; 460(Pt 2):140579. PubMed ID: 39126740 [TBL] [Abstract][Full Text] [Related]
15. Identification of tea based on CARS-SWR variable optimization of visible/near-infrared spectrum. Yun L; Qing-Wei P; Jian-Cheng Y; Yan-Lin T J Sci Food Agric; 2020 Jan; 100(1):371-375. PubMed ID: 31577843 [TBL] [Abstract][Full Text] [Related]
16. [Rapid and Dynamic Determination Models of Amino Acids and Catechins Concentrations during the Processing Procedures of Keemun Black Tea]. Ning JM; Yan L; Zhang ZZ; Wei LD; Li LQ; Fang JT; Huang CW Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3422-6. PubMed ID: 26964222 [TBL] [Abstract][Full Text] [Related]
17. [Qualitative and quantitative analysis method of tea by near infrared spectroscopy]. Niu ZY; Lin X Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Sep; 29(9):2417-20. PubMed ID: 19950642 [TBL] [Abstract][Full Text] [Related]
18. Caffeine in tea Camellia sinensis--content, absorption, benefits and risks of consumption. Gramza-MichaĆowska A J Nutr Health Aging; 2014; 18(2):143-9. PubMed ID: 24522465 [TBL] [Abstract][Full Text] [Related]
19. Variations of main quality components of tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in the China National Germplasm Tea Repository. Chen L; Zhou ZX Plant Foods Hum Nutr; 2005 Mar; 60(1):31-5. PubMed ID: 15898357 [TBL] [Abstract][Full Text] [Related]
20. Rapid detection of ash content in black tea using a homemade miniature near-infrared spectroscopy. Ren G; Yin L; Wu R; Ning J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Mar; 308():123740. PubMed ID: 38109803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]