These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39406987)
1. Preoperative discrimination of invasive and non-invasive breast cancer using machine learning based on automated breast volume scanning (ABVS) radiomics and virtual touch quantification (VTQ). Fan L; Wu Y; Wu S; Zhang C; Zhu X Discov Oncol; 2024 Oct; 15(1):565. PubMed ID: 39406987 [TBL] [Abstract][Full Text] [Related]
2. An Optimized Radiomics Model Based on Automated Breast Volume Scan Images to Identify Breast Lesions: Comparison of Machine Learning Methods: Comparison of Machine Learning Methods. Wang H; Yang X; Ma S; Zhu K; Guo S J Ultrasound Med; 2022 Jul; 41(7):1643-1655. PubMed ID: 34609750 [TBL] [Abstract][Full Text] [Related]
3. The value of automated breast volume scanner combined with virtual touch tissue quantification in the differential diagnosis of benign and malignant breast lesions: A comparative study with mammography. Wang J; Fan H; Zhu Y; Shen C; Qiang B Medicine (Baltimore); 2021 Apr; 100(16):e25568. PubMed ID: 33879713 [TBL] [Abstract][Full Text] [Related]
4. Performance evaluation of ML models for preoperative prediction of HER2-low BC based on CE-CBBCT radiomic features: A prospective study. Chen X; Li M; Liang X; Su D Medicine (Baltimore); 2024 Jun; 103(24):e38513. PubMed ID: 38875420 [TBL] [Abstract][Full Text] [Related]
5. Automated breast volume scanning combined with shear wave elastography for diagnosis of triple-negative breast cancer and human epidermal growth factor receptor 2-positive breast cancer. Chen W; Ru R; Wang F; Li M Rev Assoc Med Bras (1992); 2021 Aug; 67(8):1167-1171. PubMed ID: 34669864 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580 [TBL] [Abstract][Full Text] [Related]
7. Radiomics Analysis of Breast Lesions in Combination with Coronal Plane of ABVS and Strain Elastography. Ma Q; Shen C; Gao Y; Duan Y; Li W; Lu G; Qin X; Zhang C; Wang J Breast Cancer (Dove Med Press); 2023; 15():381-390. PubMed ID: 37260586 [TBL] [Abstract][Full Text] [Related]
8. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related]
9. Machine learning models for differential diagnosing HER2-low breast cancer: A radiomics approach. Chen X; Li M; Su D Medicine (Baltimore); 2024 Aug; 103(33):e39343. PubMed ID: 39151526 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound-based deep learning radiomics nomogram for differentiating mass mastitis from invasive breast cancer. Wu L; Li S; Wu C; Wu S; Lin Y; Wei D BMC Med Imaging; 2024 Jul; 24(1):189. PubMed ID: 39060962 [TBL] [Abstract][Full Text] [Related]
12. Non-invasive Assessment of Axillary Lymph Node Metastasis Risk in Early Invasive Breast Cancer Adopting Automated Breast Volume Scanning-Based Radiomics Nomogram: A Multicenter Study. Wang H; Yang XW; Chen F; Qin YY; Li XB; Ma SM; Lei JQ; Nan CL; Zhang WY; Chen W; Guo SL Ultrasound Med Biol; 2023 May; 49(5):1202-1211. PubMed ID: 36746744 [TBL] [Abstract][Full Text] [Related]
13. Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization. Dong W; Xiong S; Lei P; Wang X; Liu H; Liu Y; Zou H; Fan B; Qiu Y Front Oncol; 2022; 12():944005. PubMed ID: 36081562 [TBL] [Abstract][Full Text] [Related]
14. Automatic Breast Volume Scanner and B-Ultrasound-Based Radiomics Nomogram for Clinician Management of BI-RADS 4A Lesions. Ma Q; Wang J; Xu D; Zhu C; Qin J; Wu Y; Gao Y; Zhang C Acad Radiol; 2023 Aug; 30(8):1628-1637. PubMed ID: 36456445 [TBL] [Abstract][Full Text] [Related]
15. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics. Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636 [TBL] [Abstract][Full Text] [Related]
16. MRI radiomics-based machine learning model integrated with clinic-radiological features for preoperative differentiation of sinonasal inverted papilloma and malignant sinonasal tumors. Gu J; Yu Q; Li Q; Peng J; Lv F; Gong B; Zhang X Front Oncol; 2022; 12():1003639. PubMed ID: 36212455 [TBL] [Abstract][Full Text] [Related]
17. [Development of a grading diagnostic model for schistosomiasis-induced liver fibrosis based on radiomics and clinical laboratory indicators]. Guo Z; Shao J; Zou X; Zhao Q; Qian P; Wang W; Huang L; Xue J; Xu J; Yang K; Zhou X; Li S Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2024 Jun; 36(3):251-258. PubMed ID: 38952311 [TBL] [Abstract][Full Text] [Related]
18. Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer. Zhu Y; Yang L; Shen H Front Oncol; 2021; 11():757111. PubMed ID: 34868967 [TBL] [Abstract][Full Text] [Related]
19. Automated breast volume scanner based Radiomics for non-invasively prediction of lymphovascular invasion status in breast cancer. Li Y; Wu X; Yan Y; Zhou P BMC Cancer; 2023 Aug; 23(1):813. PubMed ID: 37648970 [TBL] [Abstract][Full Text] [Related]
20. Development of an interpretable machine learning model for Ki-67 prediction in breast cancer using intratumoral and peritumoral ultrasound radiomics features. Wang J; Gao W; Lu M; Yao X; Yang D Front Oncol; 2023; 13():1290313. PubMed ID: 38044998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]