These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 39407042)
1. Gene expression profiles and metabolic pathways responsible for male sterility in cybrid pummelo. Wang R; Shi YC; Zhang B; Liu WR; Tan FQ; Lu F; Jiang N; Cheng LC; Xie KD; Wu XM; Guo WW Plant Cell Rep; 2024 Oct; 43(11):262. PubMed ID: 39407042 [TBL] [Abstract][Full Text] [Related]
2. iTRAQ-based quantitative proteomics analysis revealed alterations of carbohydrate metabolism pathways and mitochondrial proteins in a male sterile cybrid pummelo. Zheng BB; Fang YN; Pan ZY; Sun L; Deng XX; Grosser JW; Guo WW J Proteome Res; 2014 Jun; 13(6):2998-3015. PubMed ID: 24824475 [TBL] [Abstract][Full Text] [Related]
3. Comparative analysis of the transcriptome, methylome, and metabolome during pollen abortion of a seedless citrus mutant. Ye LX; Gan ZM; Wang WF; Ai XY; Xie ZZ; Hu CG; Zhang JZ Plant Mol Biol; 2020 Sep; 104(1-2):151-171. PubMed ID: 32656674 [TBL] [Abstract][Full Text] [Related]
4. Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. Zheng BB; Wu XM; Ge XX; Deng XX; Grosser JW; Guo WW PLoS One; 2012; 7(8):e43758. PubMed ID: 22952758 [TBL] [Abstract][Full Text] [Related]
5. bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice. Ranjan R; Khurana R; Malik N; Badoni S; Parida SK; Kapoor S; Tyagi AK Sci Rep; 2017 Mar; 7():43397. PubMed ID: 28262713 [TBL] [Abstract][Full Text] [Related]
6. Rice transcriptional repressor OsTIE1 controls anther dehiscence and male sterility by regulating JA biosynthesis. Fang Y; Guo D; Wang Y; Wang N; Fang X; Zhang Y; Li X; Chen L; Yu D; Zhang B; Qin G Plant Cell; 2024 May; 36(5):1697-1717. PubMed ID: 38299434 [TBL] [Abstract][Full Text] [Related]
7. Spatiotemporal profiles of gene activity in stamen delineate nucleo-cytoplasmic interaction in a male-sterile somatic cybrid citrus. Jiang N; Feng MQ; Cheng LC; Kuang LH; Li CC; Yin ZP; Wang R; Xie KD; Guo WW; Wu XM Hortic Res; 2023 Jul; 10(7):uhad105. PubMed ID: 37577401 [TBL] [Abstract][Full Text] [Related]
8. The miR159a-DUO1 module regulates pollen development by modulating auxin biosynthesis and starch metabolism in citrus. Xu Y; Tian W; Yin M; Cai Z; Zhang L; Yuan D; Yi H; Wu J J Integr Plant Biol; 2024 Jul; 66(7):1351-1369. PubMed ID: 38578168 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive integrated transcriptome and metabolome analyses to reveal key genes and essential metabolic pathways involved in CMS in kenaf. Tang M; Li Z; Luo D; Wei F; Kashif MH; Lu H; Hu Y; Yue J; Huang Z; Tan W; Li R; Chen P Plant Cell Rep; 2021 Jan; 40(1):223-236. PubMed ID: 33128088 [TBL] [Abstract][Full Text] [Related]
11. Blocked synthesis of sporopollenin and jasmonic acid leads to pollen wall defects and anther indehiscence in genic male sterile wheat line 4110S at high temperatures. Yang X; Ye J; Zhang L; Song X Funct Integr Genomics; 2020 May; 20(3):383-396. PubMed ID: 31729646 [TBL] [Abstract][Full Text] [Related]
12. High-throughput sequencing and degradome analysis reveal altered expression of miRNAs and their targets in a male-sterile cybrid pummelo (Citrus grandis). Fang YN; Zheng BB; Wang L; Yang W; Wu XM; Xu Q; Guo WW BMC Genomics; 2016 Aug; 17():591. PubMed ID: 27506907 [TBL] [Abstract][Full Text] [Related]
13. Sun L; Xiang X; Yang Z; Yu P; Wen X; Wang H; Abbas A; Muhammad Khan R; Zhang Y; Cheng S; Cao L Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545137 [TBL] [Abstract][Full Text] [Related]
14. PERSISTENT TAPETAL CELL2 Is Required for Normal Tapetal Programmed Cell Death and Pollen Wall Patterning. Uzair M; Xu D; Schreiber L; Shi J; Liang W; Jung KH; Chen M; Luo Z; Zhang Y; Yu J; Zhang D Plant Physiol; 2020 Feb; 182(2):962-976. PubMed ID: 31772077 [TBL] [Abstract][Full Text] [Related]
15. Identification of male sterility-related genes in Saccharum officinarum and Saccharum spontaneum. Song J; Zhang X; Jones T; Wang ML; Ming R Plant Reprod; 2024 Dec; 37(4):489-506. PubMed ID: 38844561 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional trajectories of anther development provide candidates for engineering male fertility in sorghum. Dhaka N; Krishnan K; Kandpal M; Vashisht I; Pal M; Sharma MK; Sharma R Sci Rep; 2020 Jan; 10(1):897. PubMed ID: 31964983 [TBL] [Abstract][Full Text] [Related]
17. Comparative transcriptome analysis indicates that a core transcriptional network mediates isonuclear alloplasmic male sterility in wheat (Triticum aestivum L.). Liu Z; Li S; Li W; Liu Q; Zhang L; Song X BMC Plant Biol; 2020 Jan; 20(1):10. PubMed ID: 31910796 [TBL] [Abstract][Full Text] [Related]
18. A cotton gene encoding MYB-like transcription factor is specifically expressed in pollen and is involved in regulation of late anther/pollen development. Li Y; Jiang J; Du ML; Li L; Wang XL; Li XB Plant Cell Physiol; 2013 Jun; 54(6):893-906. PubMed ID: 23447105 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray. Qiu WM; Zhu AD; Wang Y; Chai LJ; Ge XX; Deng XX; Guo WW BMC Genomics; 2012 Aug; 13():397. PubMed ID: 22897898 [TBL] [Abstract][Full Text] [Related]
20. Seedless mutant 'Wuzi Ougan' (Citrus suavissima Hort. ex Tanaka 'seedless') and the wild type were compared by iTRAQ-based quantitative proteomics and integratedly analyzed with transcriptome to improve understanding of male sterility. Zhang C; Yu D; Ke F; Zhu M; Xu J; Zhang M BMC Genet; 2018 Nov; 19(1):106. PubMed ID: 30458706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]