These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 39407489)
1. High-Entropy and Component Stoichiometry Tuning Strategies Boost the Sodium-Ion Storage Performance of Cobalt-Free Prussian Blue Analogues Cathode Materials. Lin YT; Niu BT; Wang ZH; Li YX; Xu YP; Liu SW; Chen YX; Lin XM Molecules; 2024 Sep; 29(19):. PubMed ID: 39407489 [TBL] [Abstract][Full Text] [Related]
2. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
3. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related]
4. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries. Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173 [TBL] [Abstract][Full Text] [Related]
5. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
6. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. Qin M; Ren W; Jiang R; Li Q; Yao X; Wang S; You Y; Mai L ACS Appl Mater Interfaces; 2021 Jan; 13(3):3999-4007. PubMed ID: 33439613 [TBL] [Abstract][Full Text] [Related]
7. Defect-Healing Induced Monoclinic Iron-Based Prussian Blue Analogs as High-Performance Cathode Materials for Sodium-Ion Batteries. Peng J; Huang J; Gao Y; Qiao Y; Dong H; Liu Y; Li L; Wang J; Dou S; Chou S Small; 2023 Sep; 19(36):e2300435. PubMed ID: 37166020 [TBL] [Abstract][Full Text] [Related]
8. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035 [TBL] [Abstract][Full Text] [Related]
9. Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Peng J; Zhang W; Hu Z; Zhao L; Wu C; Peleckis G; Gu Q; Wang JZ; Liu HK; Dou SX; Chou S Nano Lett; 2022 Feb; 22(3):1302-1310. PubMed ID: 35089723 [TBL] [Abstract][Full Text] [Related]
10. Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries. Rehman R; Peng J; Yi H; Shen Y; Yin J; Li C; Fang C; Li Q; Han J RSC Adv; 2020 Jul; 10(45):27033-27041. PubMed ID: 35515809 [TBL] [Abstract][Full Text] [Related]
11. Y-tube assisted coprecipitation synthesis of iron-based Prussian blue analogues cathode materials for sodium-ion batteries. Zhang R; Liu Y; Liu H; Zhong Y; Zhang Y; Wu Z; Wang X RSC Adv; 2024 Apr; 14(17):12096-12106. PubMed ID: 38628486 [TBL] [Abstract][Full Text] [Related]
12. Coordination engineering for iron-based hexacyanoferrate as a high-stability cathode for sodium-ion batteries. Zhong J; Xia L; Chen S; Zhang Z; Pei Y; Chen H; Sun H; Zhu J; Lu B; Zhang Y Proc Natl Acad Sci U S A; 2024 Jul; 121(31):e2319193121. PubMed ID: 39052833 [TBL] [Abstract][Full Text] [Related]
13. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
14. Graphene-Roll-Wrapped Prussian Blue Nanospheres as a High-Performance Binder-Free Cathode for Sodium-Ion Batteries. Luo J; Sun S; Peng J; Liu B; Huang Y; Wang K; Zhang Q; Li Y; Jin Y; Liu Y; Qiu Y; Li Q; Han J; Huang Y ACS Appl Mater Interfaces; 2017 Aug; 9(30):25317-25322. PubMed ID: 28691793 [TBL] [Abstract][Full Text] [Related]
15. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method. Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684 [TBL] [Abstract][Full Text] [Related]
16. Nano-Ni/Co-PBA as high-performance cathode material for aqueous sodium-ion batteries. Zeng Y; Wang Y; Huang Z; Luo H; Tang H; Dong S; Luo P Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37604148 [TBL] [Abstract][Full Text] [Related]
17. Ball Milling Solid-State Synthesis of Highly Crystalline Prussian Blue Analogue Na Peng J; Gao Y; Zhang H; Liu Z; Zhang W; Li L; Qiao Y; Yang W; Wang J; Dou S; Chou S Angew Chem Int Ed Engl; 2022 Aug; 61(32):e202205867. PubMed ID: 35583767 [TBL] [Abstract][Full Text] [Related]
18. Dual Redox Reactions of Silver Hexacyanoferrate Prussian Blue Analogue Enable Superior Electrochemical Performance for Zinc-ion Storage. Wang L; Liu N; Li Q; Wang X; Liu J; Xu Y; Luo Z; Zhang N; Li F Angew Chem Int Ed Engl; 2024 Oct; ():e202416392. PubMed ID: 39401949 [TBL] [Abstract][Full Text] [Related]
19. Inhibiting the Jahn-Teller Effect of Manganese Hexacyanoferrate via Ni and Cu Codoping for Advanced Sodium-Ion Batteries. Luo Y; Shen J; Yao Y; Dai J; Ling F; Li L; Jiang Y; Wu X; Rui X; Yu Y Adv Mater; 2024 Aug; 36(32):e2405458. PubMed ID: 38839062 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of Iron-Based Prussian Blue Analogues with Ultralong Cycle Performance in a Novel T-Shaped Collision Microreactor. Wang Y; Jin Y; Zhong Y; Zhu P; Li J ACS Appl Mater Interfaces; 2024 Oct; 16(40):53980-53993. PubMed ID: 39316832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]