These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39407550)
1. Secondary Metabolites from Australian Lichens Bačkor M; Kecsey D; Drábová B; Urminská D; Šemeláková M; Goga M Molecules; 2024 Sep; 29(19):. PubMed ID: 39407550 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici. Backor M; Klemová K; Backorová M; Ivanova V J Chem Ecol; 2010 Apr; 36(4):405-11. PubMed ID: 20306219 [TBL] [Abstract][Full Text] [Related]
3. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy. Goga M; Antreich SJ; Bačkor M; Weckwerth W; Lang I Protoplasma; 2017 May; 254(3):1307-1315. PubMed ID: 27645140 [TBL] [Abstract][Full Text] [Related]
4. Usnic acid and triacylglycerides production by the cultured lichen mycobiont of Ramalina celastri. Fazio AT; Adler MT; Maier MS Nat Prod Commun; 2014 Feb; 9(2):213-4. PubMed ID: 24689292 [TBL] [Abstract][Full Text] [Related]
5. Effects of Cu on the content of chlorophylls and secondary metabolites in the Cu-hyperaccumulator lichen Stereocaulon japonicum. Nakajima H; Hara K; Yamamoto Y; Itoh K Ecotoxicol Environ Saf; 2015 Mar; 113():477-82. PubMed ID: 25562176 [TBL] [Abstract][Full Text] [Related]
6. Photobiont diversity in lichens from metal-rich substrata based on ITS rDNA sequences. Backor M; Peksa O; Skaloud P; Backorová M Ecotoxicol Environ Saf; 2010 May; 73(4):603-12. PubMed ID: 20031214 [TBL] [Abstract][Full Text] [Related]
7. Effect of Cu on the fluorescence of the Cu-hyperaccumulator lichen Stereocaulon sorediiferum. Nakajima H; Fujimoto N; Yamamoto Y; Amemiya T; Itoh K Environ Sci Pollut Res Int; 2019 Dec; 26(36):36754-36763. PubMed ID: 31741276 [TBL] [Abstract][Full Text] [Related]
8. Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Fazio AT; Adler MT; Bertoni MD; Sepúlveda CS; Damonte EB; Maier MS Z Naturforsch C J Biosci; 2007; 62(7-8):543-9. PubMed ID: 17913069 [TBL] [Abstract][Full Text] [Related]
9. Production and bioactivity of common lichen metabolites as exemplified by Heterodea muelleri (Hampe) Nyl. Hager A; Brunauer G; Türk R; Stocker-Wörgötter E J Chem Ecol; 2008 Feb; 34(2):113-20. PubMed ID: 18080715 [TBL] [Abstract][Full Text] [Related]
10. Lichen photobionts show tolerance against lichen acids produced by lichen mycobionts. Takahagi T; Endo T; Yamamoto Y; Sato F Biosci Biotechnol Biochem; 2008 Dec; 72(12):3122-7. PubMed ID: 19060396 [TBL] [Abstract][Full Text] [Related]
11. Lichen-derived compounds show potential for central nervous system therapeutics. Reddy RG; Veeraval L; Maitra S; Chollet-Krugler M; Tomasi S; Dévéhat FL; Boustie J; Chakravarty S Phytomedicine; 2016 Nov; 23(12):1527-1534. PubMed ID: 27765373 [TBL] [Abstract][Full Text] [Related]
12. Culture studies and secondary compounds of six Ramalina species. Cordeiro LM; Iacomini M; Stocker-Wörgötter E Mycol Res; 2004 May; 108(Pt 5):489-97. PubMed ID: 15230001 [TBL] [Abstract][Full Text] [Related]
13. Cyanolichens can have both cyanobacteria and green algae in a common layer as major contributors to photosynthesis. Henskens FL; Green TG; Wilkins A Ann Bot; 2012 Aug; 110(3):555-63. PubMed ID: 22648879 [TBL] [Abstract][Full Text] [Related]
14. New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae. Kosecka M; Guzow-Krzemińska B; Černajová I; Škaloud P; Jabłońska A; Kukwa M Sci Rep; 2021 Apr; 11(1):8701. PubMed ID: 33888793 [TBL] [Abstract][Full Text] [Related]
15. Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells. Fernández-Moriano C; Divakar PK; Crespo A; Gómez-Serranillos MP Food Chem Toxicol; 2017 Jul; 105():262-277. PubMed ID: 28450128 [TBL] [Abstract][Full Text] [Related]
16. Spatial variation of eco-physiological parameters in the lichen Pseudevernia furfuracea transplanted in an area surrounding a cement plant (S Italy). Lucadamo L; Corapi A; Loppi S; Paoli L; Gallo L Environ Monit Assess; 2015 Aug; 187(8):500. PubMed ID: 26160739 [TBL] [Abstract][Full Text] [Related]
17. Copper tolerance in the macrolichens Cladonia furcata and Cladina arbuscula subsp. mitis is constitutive rather than inducible. Bačkor M; Péli ER; Vantová I Chemosphere; 2011 Sep; 85(1):106-13. PubMed ID: 21676428 [TBL] [Abstract][Full Text] [Related]
18. Insights into physiological responses of mosses Physcomitrella patens and Pohlia drummondii to lichen secondary metabolites. Ručová D; Goga M; Sabovljević M; Vilková M; Petruľová V; Bačkor M Protoplasma; 2019 Nov; 256(6):1585-1595. PubMed ID: 31243559 [TBL] [Abstract][Full Text] [Related]
19. Lichen-forming fungi in postindustrial habitats involve alternative photobionts. Osyczka P; Lenart-Boroń A; Boroń P; Rola K Mycologia; 2021; 113(1):43-55. PubMed ID: 33146594 [TBL] [Abstract][Full Text] [Related]
20. The symbiotic playground of lichen thalli--a highly flexible photobiont association in rock-inhabiting lichens. Muggia L; Vancurova L; Škaloud P; Peksa O; Wedin M; Grube M FEMS Microbiol Ecol; 2013 Aug; 85(2):313-23. PubMed ID: 23530593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]