These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 39407572)
1. Petroleum Pitch-Derived Porous Carbon Materials as Metal-Free Catalyst for Dry Reforming of Methane. Huo K; Sun Y; Jiang H; Lin S; Fang H; Cheng Z; Cao S; Li L; Wang Y; Wu M Molecules; 2024 Sep; 29(19):. PubMed ID: 39407572 [TBL] [Abstract][Full Text] [Related]
2. Performance of NiO doped on alkaline sludge from waste photovoltaic industries for catalytic dry reforming of methane. Shamsuddin MR; Teo SH; Azmi TSMT; Lahuri AH; Taufiq-Yap YH Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38635095 [TBL] [Abstract][Full Text] [Related]
3. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane. Khairudin NF; Mohammadi M; Mohamed AR Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559 [TBL] [Abstract][Full Text] [Related]
4. Ni-Based Molecular Sieves Nanomaterials for Dry Methane Reforming: Role of Porous Structure and Active Sites Distribution on Hydrogen Production. Al-Fatesh AS; Ibrahim AA; Fakeeha AH; Osman AI; Alanazi YM; Almubaddel FS; Abasaeed AE Nanomaterials (Basel); 2024 Aug; 14(15):. PubMed ID: 39120425 [TBL] [Abstract][Full Text] [Related]
5. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. Hussien AGS; Polychronopoulou K Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234525 [TBL] [Abstract][Full Text] [Related]
6. Facilitating the dry reforming of methane with interfacial synergistic catalysis in an Ir@CeO Wang H; Cui G; Lu H; Li Z; Wang L; Meng H; Li J; Yan H; Yang Y; Wei M Nat Commun; 2024 May; 15(1):3765. PubMed ID: 38704402 [TBL] [Abstract][Full Text] [Related]
7. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane. Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767 [TBL] [Abstract][Full Text] [Related]
8. Decoupling the Chemical and Mechanical Strain Effect on Steering the CO Polychronopoulou K; AlKhoori S; AlBedwawi S; Alareeqi S; Hussien AGS; Vasiliades MA; Efstathiou AM; Petallidou KC; Singh N; Anjum DH; Vega LF; Baker MA ACS Appl Mater Interfaces; 2022 Jul; 14(29):33094-119. PubMed ID: 35820019 [TBL] [Abstract][Full Text] [Related]
9. Solution combustion synthesis of Ni/La Ahmad YH; Mohamed AT; Kumar A; Al-Qaradawi SY RSC Adv; 2021 Oct; 11(53):33734-33743. PubMed ID: 35497540 [TBL] [Abstract][Full Text] [Related]
10. Highly Active Ni-Ru Bimetallic Catalyst Integrated with MFI Zeolite-Loaded Cerium Zirconium Oxide for Dry Reforming of Methane. Miao C; Chen S; Shang K; Liang L; Ouyang J ACS Appl Mater Interfaces; 2022 Oct; 14(42):47616-47632. PubMed ID: 36223106 [TBL] [Abstract][Full Text] [Related]
11. Dry Reforming of Methane on Ni/LaZrO Jiao H; Wang GC ACS Appl Mater Interfaces; 2024 Jul; 16(27):35166-35178. PubMed ID: 38924504 [TBL] [Abstract][Full Text] [Related]
12. Harnessing Strong Metal-Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. Jeon OS; Lee H; Lee KS; Paidi VK; Ji Y; Kwon OC; Kim JP; Myung JH; Park SY; Yoo YJ; Lee JG; Lee SY; Shul YG ACS Appl Mater Interfaces; 2022 Mar; 14(10):12140-12148. PubMed ID: 35238550 [TBL] [Abstract][Full Text] [Related]
13. Efficient dry reforming of methane realized by photoinduced acceleration of oxygen migration rate. Li Z; Lu J; Ding J; Wang W J Colloid Interface Sci; 2024 Dec; 676():1001-1010. PubMed ID: 39068832 [TBL] [Abstract][Full Text] [Related]
14. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane. Li L; Chen J; Zhang Y; Sun J; Zou G Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826 [TBL] [Abstract][Full Text] [Related]
15. Photo-Thermal Dry Reforming of Methane with PGM-Free and PGM-Based Catalysts: A Review. Varotto A; Pasqual Laverdura U; Feroci M; Grilli ML Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124473 [TBL] [Abstract][Full Text] [Related]
16. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J Front Chem; 2022; 10():993691. PubMed ID: 36118307 [TBL] [Abstract][Full Text] [Related]
17. Precise Modulation of Triple-Phase Boundaries towards a Highly Functional Exsolved Catalyst for Dry Reforming of Methane under a Dilution-Free System. Oh J; Joo S; Lim C; Kim HJ; Ciucci F; Wang JQ; Han JW; Kim G Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202204990. PubMed ID: 35638132 [TBL] [Abstract][Full Text] [Related]
18. Unbounding the Future: Designing NiAl-Based Catalysts for Dry Reforming of Methane. Zhang W; Zhao H; Song H; Chou L Chem Asian J; 2024 Sep; 19(17):e202400503. PubMed ID: 38842469 [TBL] [Abstract][Full Text] [Related]
19. First-principles theoretical study on dry reforming of methane over perfect and boron-vacancy-containing h-BN sheet-supported Ni catalysts. Zhang Y; Yao YF; Qiao YY; Wang GC Phys Chem Chem Phys; 2021 Jan; 23(1):617-627. PubMed ID: 33331372 [TBL] [Abstract][Full Text] [Related]
20. Dry Reforming of Methane over Pyrochlore-Type La Zhou Z; Li C; Zhang J; Gao Q; Wang J; Zhang Q; Han Y Molecules; 2024 Apr; 29(8):. PubMed ID: 38675691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]