These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 39407643)

  • 1. Effective Synthesis of mRNA during In Vitro Transcription with Fewer Impurities Produced.
    He W; Geng Q; Ji G; Li J; Wang D; He Y; Jin Q; Ye J
    Molecules; 2024 Oct; 29(19):. PubMed ID: 39407643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-terminus-dependent transcription by T7 RNA polymerase and its C-helix mutants.
    Yu B; Chen Y; Yan Y; Lu X; Zhu B
    Nucleic Acids Res; 2024 Aug; 52(14):8443-8453. PubMed ID: 38979568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An engineered T7 RNA polymerase for efficient co-transcriptional capping with reduced dsRNA byproducts in mRNA synthesis.
    Miller M; Alvizo O; Baskerville S; Chintala A; Chng C; Dassie J; Dorigatti J; Huisman G; Jenne S; Kadam S; Leatherbury N; Lutz S; Mayo M; Mukherjee A; Sero A; Sundseth S; Penfield J; Riggins J; Zhang X
    Faraday Discuss; 2024 Sep; 252(0):431-449. PubMed ID: 38832894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of T7 promoter for enhanced yield and quality in mRNA production.
    Sari Y; Sousa Rosa S; Jeffries J; Marques MPC
    Sci Rep; 2024 Apr; 14(1):9655. PubMed ID: 38671016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Synthesis of High-Integrity mRNA Using In Vitro Transcription.
    He W; Zhang X; Zou Y; Li J; Wang C; He Y; Jin Q; Ye J
    Molecules; 2024 May; 29(11):. PubMed ID: 38893337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Double-Stranded RNA Contaminants During Template-Directed Synthesis of mRNA.
    Sharabrin SV; Bondar AA; Starostina EV; Kisakov DN; Kisakova LA; Zadorozhny AM; Rudometov AP; Ilyichev AA; Karpenko LI
    Bull Exp Biol Med; 2024 Apr; 176(6):751-755. PubMed ID: 38896322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychrophilic phage VSW-3 RNA polymerase reduces both terminal and full-length dsRNA byproducts in
    Xia H; Yu B; Jiang Y; Cheng R; Lu X; Wu H; Zhu B
    RNA Biol; 2022 Jan; 19(1):1130-1142. PubMed ID: 36299232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts.
    Dousis A; Ravichandran K; Hobert EM; Moore MJ; Rabideau AE
    Nat Biotechnol; 2023 Apr; 41(4):560-568. PubMed ID: 36357718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of low immunogenicity RNA with high-temperature in vitro transcription.
    Wu MZ; Asahara H; Tzertzinis G; Roy B
    RNA; 2020 Mar; 26(3):345-360. PubMed ID: 31900329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An origin of the immunogenicity of in vitro transcribed RNA.
    Mu X; Greenwald E; Ahmad S; Hur S
    Nucleic Acids Res; 2018 Jun; 46(10):5239-5249. PubMed ID: 29534222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach to RNA synthesis: immobilization of stably and functionally co-tethered promoter DNA and T7 RNA polymerase.
    MalagodaPathiranage K; Banerjee R; Martin CT
    Nucleic Acids Res; 2024 Sep; 52(17):10607-10618. PubMed ID: 39011885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-pass transcription by T7 RNA polymerase.
    Passalacqua LFM; Dingilian AI; Lupták A
    RNA; 2020 Dec; 26(12):2062-2071. PubMed ID: 32958559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation.
    Tang GQ; Nandakumar D; Bandwar RP; Lee KS; Roy R; Ha T; Patel SS
    PLoS One; 2014; 9(3):e91859. PubMed ID: 24651161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-salt transcription of DNA cotethered with T7 RNA polymerase to beads generates increased yields of highly pure RNA.
    Cavac E; Ramírez-Tapia LE; Martin CT
    J Biol Chem; 2021 Sep; 297(3):100999. PubMed ID: 34303704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mutation in T7 RNA polymerase that facilitates promoter clearance.
    Guillerez J; Lopez PJ; Proux F; Launay H; Dreyfus M
    Proc Natl Acad Sci U S A; 2005 Apr; 102(17):5958-63. PubMed ID: 15831591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
    Schaffter SW; Kengmana E; Fern J; Byrne SR; Schulman R
    ACS Synth Biol; 2024 Jul; 13(7):1964-1977. PubMed ID: 38885464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of genome transcription in segmented dsRNA viruses.
    Lawton JA; Estes MK; Prasad BV
    Adv Virus Res; 2000; 55():185-229. PubMed ID: 11050943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The low processivity of T7 RNA polymerase over the initially transcribed sequence can limit productive initiation in vivo.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1997 May; 269(1):41-51. PubMed ID: 9192999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase.
    Wu H; Wei T; Yu B; Cheng R; Huang F; Lu X; Yan Y; Wang X; Liu C; Zhu B
    RNA Biol; 2021 Oct; 18(sup1):451-466. PubMed ID: 34314299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-salt transcription from enzymatically gapped promoters nets higher yields and purity of transcribed RNAs.
    MalagodaPathiranage K; Cavac E; Chen TH; Roy B; Martin CT
    Nucleic Acids Res; 2023 Apr; 51(6):e36. PubMed ID: 36718937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.