These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 39409166)

  • 1. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets.
    Sehrawat U
    Int J Mol Sci; 2024 Oct; 25(19):. PubMed ID: 39409166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the translation machinery in cancer.
    Bhat M; Robichaud N; Hulea L; Sonenberg N; Pelletier J; Topisirovic I
    Nat Rev Drug Discov; 2015 Apr; 14(4):261-78. PubMed ID: 25743081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting translation regulators improves cancer therapy.
    Jiang SL; Mo JL; Peng J; Lei L; Yin JY; Zhou HH; Liu ZQ; Hong WX
    Genomics; 2021 Jan; 113(1 Pt 2):1247-1256. PubMed ID: 33189778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Pathways: The eIF4F Translation Initiation Complex-New Opportunities for Cancer Treatment.
    Malka-Mahieu H; Newman M; Désaubry L; Robert C; Vagner S
    Clin Cancer Res; 2017 Jan; 23(1):21-25. PubMed ID: 27789529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eukaryotic translation initiation factors and cancer.
    Ali MU; Ur Rahman MS; Jia Z; Jiang C
    Tumour Biol; 2017 Jun; 39(6):1010428317709805. PubMed ID: 28653885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Translation of mRNA as a Therapeutic Strategy in Cancer.
    Pal I; Safari M; Jovanovic M; Bates SE; Deng C
    Curr Hematol Malig Rep; 2019 Aug; 14(4):219-227. PubMed ID: 31231778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of Eukaryotic Translational Machinery as Therapeutic Agents.
    Fan A; Sharp PP
    J Med Chem; 2021 Mar; 64(5):2436-2465. PubMed ID: 33592144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic translation initiation factors as promising targets in cancer therapy.
    Hao P; Yu J; Ward R; Liu Y; Hao Q; An S; Xu T
    Cell Commun Signal; 2020 Nov; 18(1):175. PubMed ID: 33148274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic Opportunities in Eukaryotic Translation.
    Chu J; Pelletier J
    Cold Spring Harb Perspect Biol; 2018 Jun; 10(6):. PubMed ID: 29440069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting the eIF4F translation initiation complex: a critical nexus for cancer development.
    Pelletier J; Graff J; Ruggero D; Sonenberg N
    Cancer Res; 2015 Jan; 75(2):250-63. PubMed ID: 25593033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting the translational machinery as a novel treatment strategy for hematologic malignancies.
    Hagner PR; Schneider A; Gartenhaus RB
    Blood; 2010 Mar; 115(11):2127-35. PubMed ID: 20075156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attacking a nexus of the oncogenic circuitry by reversing aberrant eIF4F-mediated translation.
    Bitterman PB; Polunovsky VA
    Mol Cancer Ther; 2012 May; 11(5):1051-61. PubMed ID: 22572598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis.
    Carvalho A; Chu J; Meinguet C; Kiss R; Vandenbussche G; Masereel B; Wouters J; Kornienko A; Pelletier J; Mathieu V
    Eur J Pharmacol; 2017 Jun; 805():25-35. PubMed ID: 28322844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biological and therapeutic relevance of mRNA translation in cancer.
    Blagden SP; Willis AE
    Nat Rev Clin Oncol; 2011 May; 8(5):280-91. PubMed ID: 21364523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial ribosomes in cancer.
    Kim HJ; Maiti P; Barrientos A
    Semin Cancer Biol; 2017 Dec; 47():67-81. PubMed ID: 28445780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural products as drugs and tools for influencing core processes of eukaryotic mRNA translation.
    Burgers LD; Fürst R
    Pharmacol Res; 2021 Aug; 170():105535. PubMed ID: 34058326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization.
    Lehman SL; Wilson ED; Camphausen K; Tofilon PJ
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell Fate Control by Translation: mRNA Translation Initiation as a Therapeutic Target for Cancer Development and Stem Cell Fate Control.
    Kim HJ
    Biomolecules; 2019 Oct; 9(11):. PubMed ID: 31671902
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins.
    Jia W; Yuan J; Li S; Cheng B
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):189018. PubMed ID: 37944831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments.
    Yin JY; Dong Z; Liu ZQ; Zhang JT
    Biosci Rep; 2011 Feb; 31(1):1-15. PubMed ID: 20964625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.