These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 39409309)
1. Non-Invasive Characterization of Different Geier D; Mailänder M; Whitehead I; Becker T Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409309 [TBL] [Abstract][Full Text] [Related]
2. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering. Elvira L; Vera P; Cañadas FJ; Shukla SK; Montero F Ultrasonics; 2016 Jan; 64():151-61. PubMed ID: 26361271 [TBL] [Abstract][Full Text] [Related]
3. Effects of melatonin and tryptophol addition on fermentations carried out by Saccharomyces cerevisiae and non-Saccharomyces yeast species under different nitrogen conditions. Valera MJ; Morcillo-Parra MÁ; Zagórska I; Mas A; Beltran G; Torija MJ Int J Food Microbiol; 2019 Jan; 289():174-181. PubMed ID: 30253310 [TBL] [Abstract][Full Text] [Related]
4. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae. Shekhawat K; Bauer FF; Setati ME Appl Microbiol Biotechnol; 2017 Mar; 101(6):2479-2491. PubMed ID: 27913851 [TBL] [Abstract][Full Text] [Related]
5. Viability of yeast cells in well controlled propagating and standing ultrasonic plane waves. Radel S; McLoughlin AJ; Gherardini L; Doblhoff-Dier O; Benes E Ultrasonics; 2000 Mar; 38(1-8):633-7. PubMed ID: 10829741 [TBL] [Abstract][Full Text] [Related]
6. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Medina K; Boido E; Dellacassa E; Carrau F Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186 [TBL] [Abstract][Full Text] [Related]
7. Ultrasonic attenuation and speed of sound of cornstarch suspensions. Johnson BL; Holland MR; Miller JG; Katz JI J Acoust Soc Am; 2013 Mar; 133(3):1399-403. PubMed ID: 23464011 [TBL] [Abstract][Full Text] [Related]
8. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains. Kong II; Turner TL; Kim H; Kim SR; Jin YS FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29325040 [TBL] [Abstract][Full Text] [Related]
9. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation. Giovani G; Rosi I; Bertuccioli M Int J Food Microbiol; 2012 Nov; 160(2):113-8. PubMed ID: 23177050 [TBL] [Abstract][Full Text] [Related]
10. Investigating the proteins released by yeasts in synthetic wine fermentations. Mostert TT; Divol B Int J Food Microbiol; 2014 Feb; 171():108-18. PubMed ID: 24334096 [TBL] [Abstract][Full Text] [Related]
11. Effects of low-intensity ultrasound on the growth, cell membrane permeability and ethanol tolerance of Saccharomyces cerevisiae. Dai C; Xiong F; He R; Zhang W; Ma H Ultrason Sonochem; 2017 May; 36():191-197. PubMed ID: 28069200 [TBL] [Abstract][Full Text] [Related]
12. Effects of ultrasonic radiation on growth and fermentation in the yeast, Saccharomyces cerevisiae. ANDERSON JM Biochim Biophys Acta; 1953 May; 11(1):122-37. PubMed ID: 13066463 [No Abstract] [Full Text] [Related]
13. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation. Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207 [TBL] [Abstract][Full Text] [Related]
14. Relationships between hydrodynamics and rheology of flocculating yeast suspensions in a high-cell-density airlift bioreactor. Klein J; Maia J; Vicente AA; Domingues L; Teixeira JA; Jurascík M Biotechnol Bioeng; 2005 Feb; 89(4):393-9. PubMed ID: 15635613 [TBL] [Abstract][Full Text] [Related]
15. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae. Bellon JR; Schmid F; Capone DL; Dunn BL; Chambers PJ PLoS One; 2013; 8(4):e62053. PubMed ID: 23614011 [TBL] [Abstract][Full Text] [Related]
16. Online monitoring of the morphology of an industrial sugarcane biofuel yeast strain via in situ microscopy. Belini VL; Suhr H; Wiedemann P J Microbiol Methods; 2020 Aug; 175():105973. PubMed ID: 32522492 [TBL] [Abstract][Full Text] [Related]
17. Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Xufre A; Albergaria H; Inácio J; Spencer-Martins I; Gírio F Int J Food Microbiol; 2006 May; 108(3):376-84. PubMed ID: 16504329 [TBL] [Abstract][Full Text] [Related]
18. An innovative tool reveals interaction mechanisms among yeast populations under oenological conditions. Renault PE; Albertin W; Bely M Appl Microbiol Biotechnol; 2013 May; 97(9):4105-19. PubMed ID: 23292550 [TBL] [Abstract][Full Text] [Related]
19. The diversity of commercially available ale and lager yeast strains and the impact of brewer's preferential yeast choice on the fermentative beer profiles. Bonatto D Food Res Int; 2021 Mar; 141():110125. PubMed ID: 33641992 [TBL] [Abstract][Full Text] [Related]
20. Comparative uptake of exogenous thiamine and subsequent metabolic footprint in Saccharomyces cerevisiae and Kluyveromyces marxianus under simulated oenological conditions. Labuschagne PWJ; Rollero S; Divol B Int J Food Microbiol; 2021 Sep; 354():109206. PubMed ID: 34088559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]