These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 39409361)

  • 1. Machine Learning Applied to Edge Computing and Wearable Devices for Healthcare: Systematic Mapping of the Literature.
    Pereira CVF; de Oliveira EM; de Souza AD
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning for Healthcare Wearable Devices: The Big Picture.
    Sabry F; Eltaras T; Labda W; Alzoubi K; Malluhi Q
    J Healthc Eng; 2022; 2022():4653923. PubMed ID: 35480146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring Artificial Neural Networks Efficiency in Tiny Wearable Devices for Human Activity Recognition.
    Lattanzi E; Donati M; Freschi V
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive Extreme Edge Computing for Wearable Devices.
    Covi E; Donati E; Liang X; Kappel D; Heidari H; Payvand M; Wang W
    Front Neurosci; 2021; 15():611300. PubMed ID: 34045939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver Fatigue Detection Systems Using Multi-Sensors, Smartphone, and Cloud-Based Computing Platforms: A Comparative Analysis.
    Abbas Q; Alsheddy A
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable ECG Device and Machine Learning for Heart Monitoring.
    Alimbayeva Z; Alimbayev C; Ozhikenov K; Bayanbay N; Ozhikenova A
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing Healthcare through Sensor-Enabled Digital Twins in Smart Environments: A Comprehensive Analysis.
    Adibi S; Rajabifard A; Shojaei D; Wickramasinghe N
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects.
    Islam MM; Nooruddin S; Karray F; Muhammad G
    Comput Biol Med; 2022 Oct; 149():106060. PubMed ID: 36084382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in Machine Learning for Wearable Sensors.
    Xiao X; Yin J; Xu J; Tat T; Chen J
    ACS Nano; 2024 Aug; 18(34):22734-22751. PubMed ID: 39145724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data.
    Hendry D; Leadbetter R; McKee K; Hopper L; Wild C; O'Sullivan P; Straker L; Campbell A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable IoT Smart-Log Patch: An Edge Computing-Based Bayesian Deep Learning Network System for Multi Access Physical Monitoring System.
    Manogaran G; Shakeel PM; Fouad H; Nam Y; Baskar S; Chilamkurti N; Sundarasekar R
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data.
    Papagiannaki A; Zacharaki EI; Kalouris G; Kalogiannis S; Deltouzos K; Ellul J; Megalooikonomou V
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications.
    Shumba AT; Montanaro T; Sergi I; Fachechi L; De Vittorio M; Patrono L
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smart wearable insoles in industrial environments: A systematic review.
    Abdollahi M; Zhou Q; Yuan W
    Appl Ergon; 2024 Jul; 118():104250. PubMed ID: 38442642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Hardware Design for the Internet of Medical Things (IoMT).
    Qureshi F; Krishnan S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LPWAN and Embedded Machine Learning as Enablers for the Next Generation of Wearable Devices.
    Sanchez-Iborra R
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    J Biomed Inform; 2023 Dec; 148():104556. PubMed ID: 38048895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalizable machine learning for stress monitoring from wearable devices: A systematic literature review.
    Vos G; Trinh K; Sarnyai Z; Rahimi Azghadi M
    Int J Med Inform; 2023 May; 173():105026. PubMed ID: 36893657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.