These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39409440)
1. Autonomous Lunar Rover Localization while Fully Scanning a Bounded Obstacle-Rich Workspace. Kim J Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409440 [TBL] [Abstract][Full Text] [Related]
2. A Deep Learning Approach to Lunar Rover Global Path Planning Using Environmental Constraints and the Rover Internal Resource Status. Tanaka T; Malki H Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339561 [TBL] [Abstract][Full Text] [Related]
3. Autonomous Navigation of a Center-Articulated and Hydrostatic Transmission Rover using a Modified Pure Pursuit Algorithm in a Cotton Field. Fue K; Porter W; Barnes E; Li C; Rains G Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784690 [TBL] [Abstract][Full Text] [Related]
4. Three-Dimensional Multi-Agent Foraging Strategy Based on Local Interaction. Kim J Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836880 [TBL] [Abstract][Full Text] [Related]
5. The Mars 2020 Bell JF; Maki JN; Mehall GL; Ravine MA; Caplinger MA; Bailey ZJ; Brylow S; Schaffner JA; Kinch KM; Madsen MB; Winhold A; Hayes AG; Corlies P; Tate C; Barrington M; Cisneros E; Jensen E; Paris K; Crawford K; Rojas C; Mehall L; Joseph J; Proton JB; Cluff N; Deen RG; Betts B; Cloutis E; Coates AJ; Colaprete A; Edgett KS; Ehlmann BL; Fagents S; Grotzinger JP; Hardgrove C; Herkenhoff KE; Horgan B; Jaumann R; Johnson JR; Lemmon M; Paar G; Caballo-Perucha M; Gupta S; Traxler C; Preusker F; Rice MS; Robinson MS; Schmitz N; Sullivan R; Wolff MJ Space Sci Rev; 2021; 217(1):24. PubMed ID: 33612866 [TBL] [Abstract][Full Text] [Related]
6. Learning-Based End-to-End Path Planning for Lunar Rovers with Safety Constraints. Yu X; Wang P; Zhang Z Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33504073 [TBL] [Abstract][Full Text] [Related]
7. GNSS/IMU/ODO/LiDAR-SLAM Integrated Navigation System Using IMU/ODO Pre-Integration. Chang L; Niu X; Liu T Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825329 [TBL] [Abstract][Full Text] [Related]
8. Ancient Siliciclastic-Evaporites as Seen by Remote Sensing Instrumentation with Implications for the Rover-Scale Exploration of Sedimentary Environments on Mars. Meyer MJ; Milliken RE; Hurowitz JE; Robertson KM Astrobiology; 2023 May; 23(5):477-495. PubMed ID: 36944138 [TBL] [Abstract][Full Text] [Related]
9. Investigating the Impact of Lunar Rover Structure and Lunar Surface Characteristics on Antenna Performance. Gadhafi R; Serria E; AlMaeeni S; Mukhtar H; Abd-Alhameed R; Mansoor W Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205055 [TBL] [Abstract][Full Text] [Related]
10. The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration. Maki JN; Gruel D; McKinney C; Ravine MA; Morales M; Lee D; Willson R; Copley-Woods D; Valvo M; Goodsall T; McGuire J; Sellar RG; Schaffner JA; Caplinger MA; Shamah JM; Johnson AE; Ansari H; Singh K; Litwin T; Deen R; Culver A; Ruoff N; Petrizzo D; Kessler D; Basset C; Estlin T; Alibay F; Nelessen A; Algermissen S Space Sci Rev; 2020; 216(8):137. PubMed ID: 33268910 [TBL] [Abstract][Full Text] [Related]
11. Slip-Based Autonomous ZUPT through Gaussian Process to Improve Planetary Rover Localization. Kilic C; Ohi N; Gu Y; Gross JN IEEE Robot Autom Lett; 2021 Jul; 6(3):4782-4789. PubMed ID: 33969183 [TBL] [Abstract][Full Text] [Related]
12. Pole-Like Object Extraction and Pole-Aided GNSS/IMU/LiDAR-SLAM System in Urban Area. Liu T; Chang L; Niu X; Liu J Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33322184 [TBL] [Abstract][Full Text] [Related]
13. A New Asynchronous RTK Method to Mitigate Base Station Observation Outages. Du Y; Huang G; Zhang Q; Gao Y; Gao Y Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31374859 [TBL] [Abstract][Full Text] [Related]
15. Modeling and Analysis of a Reconfigurable Rover for Improved Traversing over Soft Sloped Terrains. Lyu S; Zhang W; Yao C; Zhu Z; Jia Z Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975361 [TBL] [Abstract][Full Text] [Related]
16. GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse Forests. Chiella ACB; Machado HN; Teixeira BOS; Pereira GAS Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547079 [TBL] [Abstract][Full Text] [Related]
17. A Robust Vehicle Localization Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Autonomous Vehicles. Meng X; Wang H; Liu B Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28926996 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning-Based Complete Coverage Path Planning With Re-Joint and Obstacle Fusion Paradigm. Lei T; Luo C; Jan GE; Bi Z Front Robot AI; 2022; 9():843816. PubMed ID: 35391941 [TBL] [Abstract][Full Text] [Related]
19. Testing and Analysis of Selected Navigation Parameters of the GNSS/INS System for USV Path Localization during Inland Hydrographic Surveys. Specht M Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676035 [TBL] [Abstract][Full Text] [Related]
20. A low-cost, mobile real-time kinematic geolocation service for engineering and research applications. Broekman A; Gräbe PJ HardwareX; 2021 Oct; 10():e00203. PubMed ID: 35607668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]