These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39409514)
1. Research on the Method of Imperfect Wheat Grain Recognition Utilizing Hyperspectral Imaging Technology. Zhang H; Zheng L; Tan L; Yang J; Gao J Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409514 [TBL] [Abstract][Full Text] [Related]
2. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface. Zhang L; Rao Z; Ji H Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577 [TBL] [Abstract][Full Text] [Related]
3. Using VIS-NIR hyperspectral imaging and deep learning for non-destructive high-throughput quantification and visualization of nutrients in wheat grains. Shi T; Gao Y; Song J; Ao M; Hu X; Yang W; Chen W; Liu Y; Feng H Food Chem; 2024 Dec; 461():140651. PubMed ID: 39154465 [TBL] [Abstract][Full Text] [Related]
4. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels. Zhang D; Chen G; Zhang H; Jin N; Gu C; Weng S; Wang Q; Chen Y Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118344. PubMed ID: 32330824 [TBL] [Abstract][Full Text] [Related]
5. Rapid determination of starch and alcohol contents in fermented grains by hyperspectral imaging combined with data fusion techniques. Liang Y; Tian J; Hu X; Huang Y; He K; Xie L; Yang H; Huang D; Zhou Y; Xia Y J Food Sci; 2024 Jun; 89(6):3540-3553. PubMed ID: 38720570 [TBL] [Abstract][Full Text] [Related]
6. Discrimination of wheat flour grade based on PSO-SVM of hyperspectral technique. Zhang S; Yin Y; Liu C; Li J; Sun X; Wu J Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123050. PubMed ID: 37379715 [TBL] [Abstract][Full Text] [Related]
7. Non-Destructive Hyperspectral Imaging for Rapid Determination of Catalase Activity and Ageing Visualization of Wheat Stored for Different Durations. Zhang Y; Lu G; Zhou X; Cheng JH Molecules; 2022 Dec; 27(24):. PubMed ID: 36557781 [TBL] [Abstract][Full Text] [Related]
8. Predicting micronutrients of wheat using hyperspectral imaging. Hu N; Li W; Du C; Zhang Z; Gao Y; Sun Z; Yang L; Yu K; Zhang Y; Wang Z Food Chem; 2021 May; 343():128473. PubMed ID: 33160768 [TBL] [Abstract][Full Text] [Related]
9. Discrimination of Wu N; Zhang C; Bai X; Du X; He Y Molecules; 2018 Oct; 23(11):. PubMed ID: 30384477 [TBL] [Abstract][Full Text] [Related]
10. [The Classification of Wheat Varieties Based on Near Infrared Hyperspectral Imaging and Information Fusion]. Dong G; Guo J; Wang C; Chen ZL; Zheng L; Zhu DZ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Dec; 35(12):3369-74. PubMed ID: 26964212 [TBL] [Abstract][Full Text] [Related]
11. Early Visual Detection of Wheat Stripe Rust Using Visible/Near-Infrared Hyperspectral Imaging. Yao Z; Lei Y; He D Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813434 [TBL] [Abstract][Full Text] [Related]
12. Discrimination of unsound wheat kernels based on deep convolutional generative adversarial network and near-infrared hyperspectral imaging technology. Li H; Zhang L; Sun H; Rao Z; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2022 Mar; 268():120722. PubMed ID: 34902690 [TBL] [Abstract][Full Text] [Related]
13. Protein content prediction of rice grains based on hyperspectral imaging. Xuan G; Jia H; Shao Y; Shi C Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 320():124589. PubMed ID: 38850826 [TBL] [Abstract][Full Text] [Related]
14. Quantitative detection of zearalenone in wheat grains based on near-infrared spectroscopy. Ning H; Wang J; Jiang H; Chen Q Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121545. PubMed ID: 35767904 [TBL] [Abstract][Full Text] [Related]
15. Using computational learning for non-melanoma skin cancer and actinic keratosis near-infrared hyperspectral signature classification. Courtenay LA; Barbero-García I; Martínez-Lastras S; Del Pozo S; Corral M; González-Aguilera D Photodiagnosis Photodyn Ther; 2024 Oct; 49():104269. PubMed ID: 39002835 [TBL] [Abstract][Full Text] [Related]
16. Maturity Stage Discrimination of Jiang H; Hu Y; Jiang X; Zhou H Molecules; 2022 Sep; 27(19):. PubMed ID: 36234855 [TBL] [Abstract][Full Text] [Related]
17. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Weng S; Tang P; Yuan H; Guo B; Yu S; Huang L; Xu C Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118237. PubMed ID: 32200232 [TBL] [Abstract][Full Text] [Related]
18. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090 [TBL] [Abstract][Full Text] [Related]
19. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Ru C; Li Z; Tang R Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31052476 [TBL] [Abstract][Full Text] [Related]
20. Estimation Model for Maize Multi-Components Based on Hyperspectral Data. Xue H; Xu X; Meng X Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338856 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]