These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39409529)
1. Fluorescence and Hyperspectral Sensors for Nondestructive Analysis and Prediction of Biophysical Compounds in the Green and Purple Leaves of Falcioni R; Oliveira RB; Chicati ML; Antunes WC; Demattê JAM; Nanni MR Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409529 [TBL] [Abstract][Full Text] [Related]
2. Hyperspectral and Chlorophyll Fluorescence Analyses of Comparative Leaf Surfaces Reveal Cellular Influences on Leaf Optical Properties in Tradescantia Plants. Falcioni R; Antunes WC; Berti de Oliveira R; Chicati ML; Demattê JAM; Nanni MR Cells; 2024 May; 13(11):. PubMed ID: 38891083 [TBL] [Abstract][Full Text] [Related]
3. High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: a case study with a maize diversity panel. Ge Y; Atefi A; Zhang H; Miao C; Ramamurthy RK; Sigmon B; Yang J; Schnable JC Plant Methods; 2019; 15():66. PubMed ID: 31391863 [TBL] [Abstract][Full Text] [Related]
4. Hyperspectral Prediction Models of Chlorophyll Content in Zhang Y; Ru G; Zhao Z; Wang D Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409349 [TBL] [Abstract][Full Text] [Related]
6. Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy. Falcioni R; Gonçalves JVF; de Oliveira KM; de Oliveira CA; Reis AS; Crusiol LGT; Furlanetto RH; Antunes WC; Cezar E; de Oliveira RB; Chicati ML; Demattê JAM; Nanni MR Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836163 [TBL] [Abstract][Full Text] [Related]
7. A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach. Falcioni R; Antunes WC; Demattê JAM; Nanni MR Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112184 [TBL] [Abstract][Full Text] [Related]
8. Application of a hyperspectral imaging system to quantify leaf-scale chlorophyll, nitrogen and chlorophyll fluorescence parameters in grapevine. Yang Z; Tian J; Feng K; Gong X; Liu J Plant Physiol Biochem; 2021 Sep; 166():723-737. PubMed ID: 34214782 [TBL] [Abstract][Full Text] [Related]
9. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology]. Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182 [TBL] [Abstract][Full Text] [Related]
10. High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Zhang H; Ge Y; Xie X; Atefi A; Wijewardane NK; Thapa S Plant Methods; 2022 May; 18(1):60. PubMed ID: 35505350 [TBL] [Abstract][Full Text] [Related]
11. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy. Liu J; Han J; Chen X; Shi L; Zhang L Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117202. PubMed ID: 31181506 [TBL] [Abstract][Full Text] [Related]
12. [Study of detection of SPAD value in tomato leaves stressed by grey mold based on hyperspectral technique]. Xie CQ; He Y; Li XL; Liu F; Du PP; Feng L Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3324-8. PubMed ID: 23427561 [TBL] [Abstract][Full Text] [Related]
13. Rapid Quantification Method for Yield, Calorimetric Energy and Chlorophyll Falcioni R; Moriwaki T; Antunes WC; Nanni MR Plants (Basel); 2022 Sep; 11(18):. PubMed ID: 36145806 [TBL] [Abstract][Full Text] [Related]
14. Estimating Chlorophyll Content of Leafy Green Vegetables from Adaxial and Abaxial Reflectance. Lu F; Bu Z; Lu S Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547033 [TBL] [Abstract][Full Text] [Related]
15. [Chlorophyll content nondestructive measurement method based on Vis/NIR spectroscopy]. Li QB; Huang YW; Zhang GJ; Zhang QX; Li X; Wu JG Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3275-8. PubMed ID: 20210149 [TBL] [Abstract][Full Text] [Related]
16. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. Burnett AC; Anderson J; Davidson KJ; Ely KS; Lamour J; Li Q; Morrison BD; Yang D; Rogers A; Serbin SP J Exp Bot; 2021 Sep; 72(18):6175-6189. PubMed ID: 34131723 [TBL] [Abstract][Full Text] [Related]
17. Hyperspectral Reflectance of Light-Adapted Leaves Can Predict Both Dark- and Light-Adapted Chl Fluorescence Parameters, and the Effects of Chronic Ozone Exposure on Date Palm ( Cotrozzi L; Lorenzini G; Nali C; Pellegrini E; Saponaro V; Hoshika Y; Arab L; Rennenberg H; Paoletti E Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32899403 [TBL] [Abstract][Full Text] [Related]
18. Automated hyperspectral vegetation index derivation using a hyperparameter optimisation framework for high-throughput plant phenotyping. Koh JCO; Banerjee BP; Spangenberg G; Kant S New Phytol; 2022 Mar; 233(6):2659-2670. PubMed ID: 34997968 [TBL] [Abstract][Full Text] [Related]
19. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions. El-Hendawy S; Al-Suhaibani N; Elsayed S; Alotaibi M; Hassan W; Schmidhalter U Plant Physiol Biochem; 2019 Nov; 144():300-311. PubMed ID: 31605962 [TBL] [Abstract][Full Text] [Related]
20. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance. Campbell PK; Middleton EM; Corp LA; Kim MS Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]