These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39410263)

  • 1. Single-Particle Crushing Test of Coated Calcareous Sand Based on MICP.
    Zhu S; Gong L; Hu Z; Xu Y; He Y; Long Y
    Materials (Basel); 2024 Sep; 17(19):. PubMed ID: 39410263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental Study on Bio-Reinforcement of Calcareous Sand through Hydrochloric Acid Solution Precipitation into Cementing Solution.
    Jiang Z; Wei R; Dai D; Li L; Shang Z; Tang J; Peng J; Li P
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle shape analysis of calcareous sand based on digital images.
    Wei X; Lu Y; Liu X; Zhang B; Luo M; Zhong L
    Sci Rep; 2024 Aug; 14(1):18465. PubMed ID: 39122755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of aeolian sand cemented via microbially induced calcite precipitation (MICP).
    Li G; Zhang YJ; Hua XQ; Liu J; Liu X
    Sci Rep; 2024 Sep; 14(1):22745. PubMed ID: 39349566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing aeolian sand stability using microbially induced calcite precipitation technology.
    Yin J; Qu W; Yibulayimu Z; Qu J
    Sci Rep; 2024 Oct; 14(1):23876. PubMed ID: 39396085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated Reinforcement of Calcareous sand via Biomineralization with Aluminum Ion Flocculant.
    Wei R; Peng J; Li L; Jiang Z; Tang J
    Appl Biochem Biotechnol; 2023 Dec; 195(12):7197-7213. PubMed ID: 36988847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly effective strain screened from soil and applied in cementing fine sand based on MICP-bonding technology.
    Wang X; Li C; He J
    J Biotechnol; 2022 May; 350():55-66. PubMed ID: 35429551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Sand Cementation with an Efficient Method of Microbial-Induced Calcite Precipitation.
    Wang L; Liu S
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Study on the Wind Erosion Resistance of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation (MICP).
    Qu J; Li G; Ma B; Liu J; Zhang J; Liu X; Zhang Y
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Different Types of Fibers on the Physical and Mechanical Properties of MICP-Treated Calcareous Sand.
    Zhao J; Tong H; Shan Y; Yuan J; Peng Q; Liang J
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of unconfined compressive strength and environmental impact of MICP-treated lead-zinc tailings sand instead of sand as embankment material.
    Yang Z; Liu L; Dong Y; Liu X; Wang X
    Sci Total Environ; 2024 Jun; 931():172809. PubMed ID: 38679087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and extraction of cementation patterns in sand modified by MICP: New insights at the pore scale.
    Wang B; Guo L; Luo X; Jiang Y; Li Q; Xie J
    PLoS One; 2024; 19(3):e0296437. PubMed ID: 38512878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of the Addition of Plant-Based Natural Fibers (Jute) on Biocemented Sand Using MICP Method.
    Imran MA; Gowthaman S; Nakashima K; Kawasaki S
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32967316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Particle Size and Constraint Conditions on Single Particle Strength of Carbonate Sand.
    He Y; Cai G; Gao L; He H
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear Strength Behaviors of Aeolian Sand Solidified by Microbially Induced Calcite Precipitation and Basalt Fiber Reinforcement.
    Li G; Liu J; Zhang J; Yang Y; Chen S
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the Composition Effect of a Bio-Cementation Solution on the Efficiency of Microbially Induced Calcite Precipitation Processes in Loose Sandy Soil.
    Fronczyk J; Marchelina N; Pyzik A; Franus M
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface rainfall erosion resistance and freeze-thaw durability of bio-cemented and polymer-modified loess slopes.
    Sun X; Miao L; Chen R; Wang H; Xia J
    J Environ Manage; 2022 Jan; 301():113883. PubMed ID: 34601348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR).
    Liu J; Li X; Li G; Zhang J
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36903064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement of Calcareous Sands by Stimulation of Native Microorganisms Induced Mineralization.
    Shen G; Liu S; He Y; Pan M; Yu J; Cai Y
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-cement-modified construction materials and their performances.
    Yu X; He Z; Li X
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11219-11231. PubMed ID: 34528205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.