These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39410810)
1. A fungal endophyte increases plant resilience to low nutrient availabilities: a case of Fe acquisition in legumes. Avramidou M; Balaktsis V; Tsiouri O; Maghrebi M; Vigani G; Sergiou A; Ntelkis N; Ehaliotis C; Papadopoulou KK Physiol Plant; 2024; 176(5):e14577. PubMed ID: 39410810 [TBL] [Abstract][Full Text] [Related]
2. Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens. Skiada V; Faccio A; Kavroulakis N; Genre A; Bonfante P; Papadopoulou KK Fungal Genet Biol; 2019 Jun; 127():60-74. PubMed ID: 30872027 [TBL] [Abstract][Full Text] [Related]
3. The fungal endophyte Fusarium solani provokes differential effects on the fitness of two Lotus species. Nieva AS; Vilas JM; Gárriz A; Maiale SJ; Menéndez AB; Erban A; Kopka J; Ruiz OA Plant Physiol Biochem; 2019 Nov; 144():100-109. PubMed ID: 31561198 [TBL] [Abstract][Full Text] [Related]
4. Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Wang B; Li Y; Zhang WH Ann Bot; 2012 Aug; 110(3):681-8. PubMed ID: 22684685 [TBL] [Abstract][Full Text] [Related]
5. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. García MJ; Romera FJ; Stacey MG; Stacey G; Villar E; Alcántara E; Pérez-Vicente R Planta; 2013 Jan; 237(1):65-75. PubMed ID: 22983673 [TBL] [Abstract][Full Text] [Related]
6. Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30(T). Straub D; Yang H; Liu Y; Tsap T; Ludewig U J Exp Bot; 2013 Nov; 64(14):4603-15. PubMed ID: 24043849 [TBL] [Abstract][Full Text] [Related]
8. Loss of function of Arabidopsis C-terminal domain phosphatase-like1 activates iron deficiency responses at the transcriptional level. Aksoy E; Jeong IS; Koiwa H Plant Physiol; 2013 Jan; 161(1):330-45. PubMed ID: 23144187 [TBL] [Abstract][Full Text] [Related]
9. Impact of endophytic colonization patterns on Zamioculcas zamiifolia stress response and in regulating ROS, tryptophan and IAA levels under airborne formaldehyde and formaldehyde-contaminated soil conditions. Khaksar G; Treesubsuntorn C; Thiravetyan P Plant Physiol Biochem; 2017 May; 114():1-9. PubMed ID: 28246037 [TBL] [Abstract][Full Text] [Related]
10. Fungal endophyte (Epichloë festucae) alters the nutrient content of Festuca rubra regardless of water availability. Vázquez-de-Aldana BR; García-Ciudad A; García-Criado B; Vicente-Tavera S; Zabalgogeazcoa I PLoS One; 2013; 8(12):e84539. PubMed ID: 24367672 [TBL] [Abstract][Full Text] [Related]
11. Natural variation for Fe-efficiency is associated with upregulation of Strategy I mechanisms and enhanced citrate and ethylene synthesis in Pisum sativum L. Kabir AH; Paltridge NG; Able AJ; Paull JG; Stangoulis JC Planta; 2012 Jun; 235(6):1409-19. PubMed ID: 22212907 [TBL] [Abstract][Full Text] [Related]
12. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. Hsieh EJ; Waters BM J Exp Bot; 2016 Oct; 67(19):5671-5685. PubMed ID: 27605716 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. Kabir AH; Paltridge NG; Roessner U; Stangoulis JC Physiol Plant; 2013 Mar; 147(3):381-95. PubMed ID: 22913816 [TBL] [Abstract][Full Text] [Related]
14. Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Waters BM; Blevins DG; Eide DJ Plant Physiol; 2002 May; 129(1):85-94. PubMed ID: 12011340 [TBL] [Abstract][Full Text] [Related]
15. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2. Vasconcelos M; Eckert H; Arahana V; Graef G; Grusak MA; Clemente T Planta; 2006 Oct; 224(5):1116-28. PubMed ID: 16741749 [TBL] [Abstract][Full Text] [Related]
16. Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean. Qiu W; Dai J; Wang N; Guo X; Zhang X; Zuo Y Plant Physiol Biochem; 2017 Mar; 112():1-8. PubMed ID: 28012287 [TBL] [Abstract][Full Text] [Related]
17. Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe(2+) bio-availability through inoculation with Pantoea eucalypti M91. Campestre MP; Castagno LN; Estrella MJ; Ruiz OA J Plant Physiol; 2016 Mar; 192():47-55. PubMed ID: 26815729 [TBL] [Abstract][Full Text] [Related]
18. Differential expression and regulation of iron-regulated metal transporters in Arabidopsis halleri and Arabidopsis thaliana--the role in zinc tolerance. Shanmugam V; Lo JC; Wu CL; Wang SL; Lai CC; Connolly EL; Huang JL; Yeh KC New Phytol; 2011 Apr; 190(1):125-137. PubMed ID: 21219335 [TBL] [Abstract][Full Text] [Related]
19. The alkaline tolerance in Lotus japonicus is associated with mechanisms of iron acquisition and modification of the architectural pattern of the root. Campestre MP; Antonelli C; Calzadilla PI; Maiale SJ; Rodríguez AA; Ruiz OA J Plant Physiol; 2016 Nov; 206():40-48. PubMed ID: 27688092 [TBL] [Abstract][Full Text] [Related]
20. The effects of fungal root endophytes on plant growth: a meta-analysis. Mayerhofer MS; Kernaghan G; Harper KA Mycorrhiza; 2013 Feb; 23(2):119-28. PubMed ID: 22983627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]