These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 39411068)
1. PBPK-based translation from preclinical species to humans for the full-size IgG therapeutic efalizumab. Franz M; Jairam RK; Kuepfer L; Hanke N Front Pharmacol; 2024; 15():1418870. PubMed ID: 39411068 [TBL] [Abstract][Full Text] [Related]
2. Translation of Monoclonal Antibodies Pharmacokinetics from Animal to Human Using Physiologically Based Modeling in Open Systems Pharmacology (OSP) Suite: A Retrospective Analysis of Bevacizumab. Pasquiers B; Benamara S; Felices M; Ternant D; Declèves X; Puszkiel A Pharmaceutics; 2023 Aug; 15(8):. PubMed ID: 37631343 [TBL] [Abstract][Full Text] [Related]
3. Prediction of the Pharmacokinetics, Pharmacodynamics, and Efficacy of a Monoclonal Antibody, Using a Physiologically Based Pharmacokinetic FcRn Model. Chetty M; Li L; Rose R; Machavaram K; Jamei M; Rostami-Hodjegan A; Gardner I Front Immunol; 2014; 5():670. PubMed ID: 25601866 [TBL] [Abstract][Full Text] [Related]
4. Physiologically based pharmacokinetic models for systemic disposition of protein therapeutics in rabbits. Jairam RK; Franz M; Hanke N; Kuepfer L Front Pharmacol; 2024; 15():1427325. PubMed ID: 39263566 [TBL] [Abstract][Full Text] [Related]
5. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. Shah DK; Betts AM J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261 [TBL] [Abstract][Full Text] [Related]
6. A translational platform PBPK model for antibody disposition in the brain. Chang HY; Wu S; Meno-Tetang G; Shah DK J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):319-338. PubMed ID: 31115858 [TBL] [Abstract][Full Text] [Related]
7. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. Glassman PM; Balthasar JP J Pharmacokinet Pharmacodyn; 2016 Aug; 43(4):427-46. PubMed ID: 27377311 [TBL] [Abstract][Full Text] [Related]
8. Predicting In Vivo Target Occupancy (TO) Profiles via Physiologically Based Pharmacokinetic-TO Modeling of Warfarin Pharmacokinetics in Blood: Importance of Low Dose Data and Prediction of Stereoselective Target Interactions. Lee W; Kim MS; Kim J; Aoki Y; Sugiyama Y Drug Metab Dispos; 2023 Sep; 51(9):1145-1156. PubMed ID: 36914276 [TBL] [Abstract][Full Text] [Related]
9. Incorporating Pharmacological Target-Mediated Drug Disposition (TMDD) in a Whole-Body Physiologically Based Pharmacokinetic (PBPK) Model of Linagliptin in Rat and Scale-up to Human. Wu N; An G AAPS J; 2020 Sep; 22(6):125. PubMed ID: 32996028 [TBL] [Abstract][Full Text] [Related]
10. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys. Glassman PM; Chen Y; Balthasar JP J Pharmacokinet Pharmacodyn; 2015 Oct; 42(5):527-40. PubMed ID: 26364301 [TBL] [Abstract][Full Text] [Related]
12. Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Dostalek M; Gardner I; Gurbaxani BM; Rose RH; Chetty M Clin Pharmacokinet; 2013 Feb; 52(2):83-124. PubMed ID: 23299465 [TBL] [Abstract][Full Text] [Related]
13. A Physiological-Based Pharmacokinetic Model Embedded with a Target-Mediated Drug Disposition Mechanism Can Characterize Single-Dose Warfarin Pharmacokinetic Profiles in Subjects with Various Cheng S; Flora DR; Rettie AE; Brundage RC; Tracy TS Drug Metab Dispos; 2023 Feb; 51(2):257-267. PubMed ID: 36379708 [TBL] [Abstract][Full Text] [Related]
14. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
15. Incorporating target-mediated drug disposition in a minimal physiologically-based pharmacokinetic model for monoclonal antibodies. Cao Y; Jusko WJ J Pharmacokinet Pharmacodyn; 2014 Aug; 41(4):375-87. PubMed ID: 25077917 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a catenary PBPK model for predicting the in vivo disposition of mAbs engineered for high-affinity binding to FcRn. Chen Y; Balthasar JP AAPS J; 2012 Dec; 14(4):850-9. PubMed ID: 22956476 [TBL] [Abstract][Full Text] [Related]
17. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. Garg A; Balthasar JP J Pharmacokinet Pharmacodyn; 2007 Oct; 34(5):687-709. PubMed ID: 17636457 [TBL] [Abstract][Full Text] [Related]
18. Whole-Body Disposition and Physiologically Based Pharmacokinetic Modeling of Adeno-Associated Viruses and the Transgene Product. Liu S; Chowdhury EA; Xu V; Jerez A; Mahmood L; Ly BQ; Le HK; Nguyen A; Rajwade A; Meno-Tetang G; Shah DK J Pharm Sci; 2024 Jan; 113(1):141-157. PubMed ID: 37805073 [TBL] [Abstract][Full Text] [Related]
19. Development of a physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies in rabbits. Bussing D; K Shah D J Pharmacokinet Pharmacodyn; 2020 Dec; 47(6):597-612. PubMed ID: 32876799 [TBL] [Abstract][Full Text] [Related]
20. Toward systems-informed models for biologics disposition: covariates of the abundance of the neonatal Fc Receptor (FcRn) in human tissues and implications for pharmacokinetic modelling. Barber J; Al-Majdoub ZM; Couto N; Howard M; Elmorsi Y; Scotcher D; Alizai N; de Wildt S; Stader F; Sepp A; Rostami-Hodjegan A; Achour B Eur J Pharm Sci; 2023 Mar; 182():106375. PubMed ID: 36626943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]