These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39411262)
1. Design and performance optimization of a lattice-based radial flow field in proton exchange membrane fuel cells. Zheng M; Liang H; Bu W; Luo X; Hu X; Zhang Z RSC Adv; 2024 Oct; 14(44):32542-32553. PubMed ID: 39411262 [TBL] [Abstract][Full Text] [Related]
2. The respective effect of under-rib convection and pressure drop of flow fields on the performance of PEM fuel cells. Wang C; Zhang Q; Shen S; Yan X; Zhu F; Cheng X; Zhang J Sci Rep; 2017 Mar; 7():43447. PubMed ID: 28251983 [TBL] [Abstract][Full Text] [Related]
3. Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs - Review. Marappan M; Palaniswamy K; Velumani T; Chul KB; Velayutham R; Shivakumar P; Sundaram S Chem Rec; 2021 Apr; 21(4):663-714. PubMed ID: 33543591 [TBL] [Abstract][Full Text] [Related]
4. Influence and Optimization of Gas Diffusion Layer Porosity Distribution along the Flow Direction on the Performance of Proton Exchange Membrane Fuel Cells. Zhang J; Xuan D; Liu S; Chen C ACS Omega; 2024 Jan; 9(1):239-251. PubMed ID: 38222527 [TBL] [Abstract][Full Text] [Related]
5. A New Integrated GDL with Wavy Channel and Tunneled Rib for High Power Density PEMFC at Low Back Pressure and Wide Humidity. He C; Wen Q; Ning F; Shen M; He L; Li Y; Tian B; Pan S; Dan X; Li W; Xu P; Liu Y; Chai Z; Zhang Y; Liu W; Zhou X Adv Sci (Weinh); 2023 Oct; 10(28):e2302928. PubMed ID: 37541300 [TBL] [Abstract][Full Text] [Related]
6. Scaling Up Studies on PEMFC Using a Modified Serpentine Flow Field Incorporating Porous Sponge Inserts to Observe Water Molecules. Marappan M; Narayanan R; Manoharan K; Vijayakrishnan MK; Palaniswamy K; Karazhanov S; Sundaram S Molecules; 2021 Jan; 26(2):. PubMed ID: 33430043 [TBL] [Abstract][Full Text] [Related]
7. Alternating Flow Field Design Improves the Performance of Proton Exchange Membrane Fuel Cells. Qin Z; Huo W; Bao Z; Tongsh C; Wang B; Du Q; Jiao K Adv Sci (Weinh); 2023 Feb; 10(4):e2205305. PubMed ID: 36470593 [TBL] [Abstract][Full Text] [Related]
8. Performance of the multi-U-style structure based flow field for polymer electrolyte membrane fuel cell. Qi W; Chen X; Zhang ZG; Ge S; Wang H; Deng R; Liu Z; Tuo J; Guo S; Cheng J Sci Rep; 2024 Oct; 14(1):23318. PubMed ID: 39375479 [TBL] [Abstract][Full Text] [Related]
9. Real-Time Monitoring of the Temperature, Flow, and Pressure Inside High-Temperature Proton Exchange Membrane Fuel Cells. Lee CY; Weng FB; Chiu CW; Nawale SM; Lai BJ Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888857 [TBL] [Abstract][Full Text] [Related]
10. Optimization of Flow Channels in a PEM Fuel Cell Based on a Multiobjective Evaluation. Jiang D; Wang F; Li X; Tan J; Wang C ACS Omega; 2024 Jan; 9(1):1683-1694. PubMed ID: 38222584 [TBL] [Abstract][Full Text] [Related]
11. Effect of Gas Diffusion Layer Notch Arrangement and Gradient Depth on the Performance of Proton Exchange Membrane Fuel Cells in the Serpentine Flow Field. Zhang H; Zhang L; Zhang Y; Hou Z; Liu J ACS Omega; 2023 Mar; 8(11):10191-10201. PubMed ID: 36969400 [TBL] [Abstract][Full Text] [Related]
12. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy. Feindel KW; Bergens SH; Wasylishen RE J Am Chem Soc; 2006 Nov; 128(43):14192-9. PubMed ID: 17061904 [TBL] [Abstract][Full Text] [Related]
13. Study on water and oxygen transfer characteristics of HT-PEM fuel cells. He H; Peng H; Li G Heliyon; 2023 Sep; 9(9):e19832. PubMed ID: 37809893 [TBL] [Abstract][Full Text] [Related]
14. Investigating the Effect of the Compensation Flow Fields on the Performance and Thermal Stress Distribution of a Typical Fuel Cell. Zhao Y; Hu C; Xu C; Cho HM; Chen D ACS Omega; 2024 Apr; 9(15):17458-17466. PubMed ID: 38645310 [TBL] [Abstract][Full Text] [Related]
15. Snowflake Bionic Flow Channel Design to Optimize the Pressure Drop and Flow Uniform of Proton Exchange Membrane Fuel Cells. Li Y; Bi J; Tang M; Lu G Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630132 [TBL] [Abstract][Full Text] [Related]
16. Parameter estimation of proton exchange membrane fuel cell using a novel meta-heuristic algorithm. Singla MK; Nijhawan P; Oberoi AS Environ Sci Pollut Res Int; 2021 Jul; 28(26):34511-34526. PubMed ID: 33655474 [TBL] [Abstract][Full Text] [Related]
17. Effects of the Design and Optimization of Trapezoidal Channels and Baffles (Number and Position) on the Net Power Density of Proton-Exchange Membrane Fuel Cells. Xu C; Wang H; Li Z; Cheng T ACS Omega; 2022 Feb; 7(5):4214-4223. PubMed ID: 35155914 [TBL] [Abstract][Full Text] [Related]
18. Flexible and Lightweight Fuel Cell with High Specific Power Density. Ning F; He X; Shen Y; Jin H; Li Q; Li D; Li S; Zhan Y; Du Y; Jiang J; Yang H; Zhou X ACS Nano; 2017 Jun; 11(6):5982-5991. PubMed ID: 28605195 [TBL] [Abstract][Full Text] [Related]
19. Experimental and Numerical Study of Proton Exchange Membrane Fuel Cells with a Novel Compound Flow Field. Wang Y; Wang L; Ji X; Zhou Y; Wu M ACS Omega; 2021 Aug; 6(34):21892-21899. PubMed ID: 34497884 [TBL] [Abstract][Full Text] [Related]
20. Microstructure Reconstruction and Multiphysics Dynamic Distribution Simulation of the Catalyst Layer in PEMFC. Zhan Z; Song H; Yang X; Jiang P; Chen R; Harandi HB; Zhang H; Pan M Membranes (Basel); 2022 Oct; 12(10):. PubMed ID: 36295760 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]