These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 39412055)
1. FMO-LC-TDDFTB method for excited states of large molecular assemblies in the strong light-matter coupling regime. Einsele R; Philipp LN; Mitrić R J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39412055 [TBL] [Abstract][Full Text] [Related]
2. Nonadiabatic Exciton Dynamics and Energy Gradients in the Framework of FMO-LC-TDDFTB. Einsele R; Mitrić R J Chem Theory Comput; 2024 Aug; 20(15):6587-6603. PubMed ID: 39051619 [TBL] [Abstract][Full Text] [Related]
3. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. Einsele R; Hoche J; Mitrić R J Chem Phys; 2023 Jan; 158(4):044121. PubMed ID: 36725509 [TBL] [Abstract][Full Text] [Related]
4. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity. Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330 [TBL] [Abstract][Full Text] [Related]
5. Exciton localization in excited-state dynamics of a tetracene trimer: a surface hopping LC-TDDFTB study. Titov E; Humeniuk A; Mitrić R Phys Chem Chem Phys; 2018 Oct; 20(40):25995-26007. PubMed ID: 30298878 [TBL] [Abstract][Full Text] [Related]
6. Calculation of exciton couplings based on density functional tight-binding coupled to state-interaction state-averaged ensemble-referenced Kohn-Sham approach. Kim TI; Lee IS; Kim H; Min SK J Chem Phys; 2023 Jan; 158(4):044106. PubMed ID: 36725518 [TBL] [Abstract][Full Text] [Related]
8. Finite temperature dynamics of the Holstein-Tavis-Cummings model. Hou E; Sun K; Gelin MF; Zhao Y J Chem Phys; 2024 Feb; 160(8):. PubMed ID: 38421073 [TBL] [Abstract][Full Text] [Related]
9. Spin-orbit-coupled exciton-polariton condensates in lead halide perovskites. Spencer MS; Fu Y; Schlaus AP; Hwang D; Dai Y; Smith MD; Gamelin DR; Zhu XY Sci Adv; 2021 Dec; 7(49):eabj7667. PubMed ID: 34851673 [TBL] [Abstract][Full Text] [Related]
10. Effects of disorder on polaritonic and dark states in a cavity using the disordered Tavis-Cummings model. Gera T; Sebastian KL J Chem Phys; 2022 May; 156(19):194304. PubMed ID: 35597631 [TBL] [Abstract][Full Text] [Related]
11. Analytic derivative couplings and first-principles exciton/phonon coupling constants for an ab initio Frenkel-Davydov exciton model: Theory, implementation, and application to compute triplet exciton mobility parameters for crystalline tetracene. Morrison AF; Herbert JM J Chem Phys; 2017 Jun; 146(22):224110. PubMed ID: 29166040 [TBL] [Abstract][Full Text] [Related]
12. Vibration-assisted exciton transfer in molecular aggregates strongly coupled to confined light fields. Liu J; Zhao Q; Wu N J Chem Phys; 2019 Mar; 150(10):105102. PubMed ID: 30876346 [TBL] [Abstract][Full Text] [Related]
13. Enhanced Second-Order Nonlinearity for THz Generation by Resonant Interaction of Exciton-Polariton Rabi Oscillations with Optical Phonons. Rojan K; Léger Y; Morigi G; Richard M; Minguzzi A Phys Rev Lett; 2017 Sep; 119(12):127401. PubMed ID: 29341639 [TBL] [Abstract][Full Text] [Related]
14. Quantum Yield of Polariton Emission from Hybrid Light-Matter States. Wang S; Chervy T; George J; Hutchison JA; Genet C; Ebbesen TW J Phys Chem Lett; 2014 Apr; 5(8):1433-9. PubMed ID: 26269990 [TBL] [Abstract][Full Text] [Related]
15. Polariton-assisted incoherent to coherent excitation energy transfer between colloidal nanocrystal quantum dots. Peng K; Rabani E J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39417420 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of disordered Tavis-Cummings and Holstein-Tavis-Cummings models. Sun K; Dou C; Gelin MF; Zhao Y J Chem Phys; 2022 Jan; 156(2):024102. PubMed ID: 35032972 [TBL] [Abstract][Full Text] [Related]
17. Singlet fission of amorphous rubrene modulated by polariton formation. Takahashi S; Watanabe K; Matsumoto Y J Chem Phys; 2019 Aug; 151(7):074703. PubMed ID: 31438713 [TBL] [Abstract][Full Text] [Related]
18. Drastic transitions of excited state and coupling regime in all-inorganic perovskite microcavities characterized by exciton/plasmon hybrid natures. Enomoto S; Tagami T; Ueda Y; Moriyama Y; Fujiwara K; Takahashi S; Yamashita K Light Sci Appl; 2022 Jan; 11(1):8. PubMed ID: 34974529 [TBL] [Abstract][Full Text] [Related]
19. Beyond Cavity Born-Oppenheimer: On Nonadiabatic Coupling and Effective Ground State Hamiltonians in Vibro-Polaritonic Chemistry. Fischer EW; Saalfrank P J Chem Theory Comput; 2023 Oct; 19(20):7215-7229. PubMed ID: 37793029 [TBL] [Abstract][Full Text] [Related]
20. Ab initio polaritonic potential-energy surfaces for excited-state nanophotonics and polaritonic chemistry. Flick J; Narang P J Chem Phys; 2020 Sep; 153(9):094116. PubMed ID: 32891103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]