These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39412343)
1. Nanobubble Formation and Coverage during High Current Density Alkaline Water Electrolysis. Hammons JA; Kang S; Ferron TJ; Aydin F; Lin TY; Seung K; Chow P; Xiao Y; Davis JT Nano Lett; 2024 Oct; 24(43):13695-13701. PubMed ID: 39412343 [TBL] [Abstract][Full Text] [Related]
2. Gas micronuclei that underlie decompression bubbles and decompression sickness have not been identified. Doolette DJ Diving Hyperb Med; 2019 Mar; 49(1):64. PubMed ID: 30856670 [TBL] [Abstract][Full Text] [Related]
4. Dynamic Equilibrium Model for Surface Nanobubbles in Electrochemistry. Ma Y; Guo Z; Chen Q; Zhang X Langmuir; 2021 Mar; 37(8):2771-2779. PubMed ID: 33576638 [TBL] [Abstract][Full Text] [Related]
5. Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles. Zhang Y; Zhu X; Wood JA; Lohse D Proc Natl Acad Sci U S A; 2024 May; 121(21):e2321958121. PubMed ID: 38748584 [TBL] [Abstract][Full Text] [Related]
6. Dimensions and the profile of surface nanobubbles: tip-nanobubble interactions and nanobubble deformation in atomic force microscopy. Walczyk W; Schönherr H Langmuir; 2014 Oct; 30(40):11955-65. PubMed ID: 25222759 [TBL] [Abstract][Full Text] [Related]
7. Hydroxide and Hydronium Ions Modulate the Dynamic Evolution of Nitrogen Nanobubbles in Water. Zhang P; Chen C; Feng M; Sun C; Xu X J Am Chem Soc; 2024 Jul; 146(28):19537-19546. PubMed ID: 38949461 [TBL] [Abstract][Full Text] [Related]
9. Graphene Nanobubbles Produced by Water Splitting. An H; Tan BH; Moo JGS; Liu S; Pumera M; Ohl CD Nano Lett; 2017 May; 17(5):2833-2838. PubMed ID: 28394607 [TBL] [Abstract][Full Text] [Related]
10. Electrochemistry of single nanobubbles. Estimating the critical size of bubble-forming nuclei for gas-evolving electrode reactions. German SR; Edwards MA; Chen Q; Liu Y; Luo L; White HS Faraday Discuss; 2016 Dec; 193():223-240. PubMed ID: 27722703 [TBL] [Abstract][Full Text] [Related]
11. An Experimental Study on Bubble Collapsing Effect of Nanobubble Using Ultrasonic Wave. Kim M; Song S; Kim W; Han JG J Nanosci Nanotechnol; 2020 Jan; 20(1):636-642. PubMed ID: 31383225 [TBL] [Abstract][Full Text] [Related]
12. Concentration of hydrogen nanobubbles in electrolyzed water. Kikuchi K; Tanaka Y; Saihara Y; Maeda M; Kawamura M; Ogumi Z J Colloid Interface Sci; 2006 Jun; 298(2):914-9. PubMed ID: 16445932 [TBL] [Abstract][Full Text] [Related]
13. On the Existence and Stability of Bulk Nanobubbles. Nirmalkar N; Pacek AW; Barigou M Langmuir; 2018 Sep; 34(37):10964-10973. PubMed ID: 30179016 [TBL] [Abstract][Full Text] [Related]
14. Nanobubbles produced by nanopores to probe gas-liquid mass transfer characteristics. Sharma H; Nirmalkar N; Zhang W J Colloid Interface Sci; 2024 Jul; 665():274-285. PubMed ID: 38531273 [TBL] [Abstract][Full Text] [Related]
15. A modelling approach to explore the optimum bubble size for micro-nanobubble aeration. Fan W; Li Y; Lyu T; Yu J; Chen Z; Jarvis P; Huo Y; Xiao D; Huo M Water Res; 2023 Jan; 228(Pt A):119360. PubMed ID: 36402060 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of the Decrease in Surface Tension by Bulk Nanobubbles (Ultrafine Bubbles). Yasui K; Tuziuti T; Kanematsu W Langmuir; 2023 Nov; 39(46):16574-16583. PubMed ID: 37934653 [TBL] [Abstract][Full Text] [Related]
17. Theoretical model of dynamics and stability of nanobubbles on heterogeneous surfaces. Lan L; Pan Y; Zhou L; Kuang H; Zhang L; Wen B J Colloid Interface Sci; 2025 Jan; 678(Pt A):322-333. PubMed ID: 39208760 [TBL] [Abstract][Full Text] [Related]
18. The dance of the nanobubbles: detecting acoustic backscatter from sub-micron bubbles using ultra-high frequency acoustic microscopy. Moore MJ; Bodera F; Hernandez C; Shirazi N; Abenojar E; Exner AA; Kolios MC Nanoscale; 2020 Nov; 12(41):21420-21428. PubMed ID: 33079108 [TBL] [Abstract][Full Text] [Related]
19. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles. Jing D; Li D; Pan Y; Bhushan B Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of Nucleation and Stationary States of Electrochemically Generated Nanobubbles. Perez Sirkin YA; Gadea ED; Scherlis DA; Molinero V J Am Chem Soc; 2019 Jul; 141(27):10801-10811. PubMed ID: 31190533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]