These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 39413178)
1. The e-Flower: A hydrogel-actuated 3D MEA for brain spheroid electrophysiology. Martinelli E; Akouissi O; Liebi L; Furfaro I; Maulà D; Savoia N; Remy A; Nikles L; Roux A; Stoppini L; Lacour SP Sci Adv; 2024 Oct; 10(42):eadp8054. PubMed ID: 39413178 [TBL] [Abstract][Full Text] [Related]
2. Soft conductive micropillar electrode arrays for biologically relevant electrophysiological recording. Liu Y; McGuire AF; Lou HY; Li TL; Tok JB; Cui B; Bao Z Proc Natl Acad Sci U S A; 2018 Nov; 115(46):11718-11723. PubMed ID: 30377271 [TBL] [Abstract][Full Text] [Related]
3. Bioelectrical interfaces with cortical spheroids in three-dimensions. Kalmykov A; Reddy JW; Bedoyan E; Wang Y; Garg R; Rastogi SK; Cohen-Karni D; Chamanzar M; Cohen-Karni T J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33770775 [No Abstract] [Full Text] [Related]
4. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces. Choi JS; Lee HJ; Rajaraman S; Kim DH Biosens Bioelectron; 2021 Jan; 171():112687. PubMed ID: 33059168 [TBL] [Abstract][Full Text] [Related]
5. A flexible 3-dimensional microelectrode array for in vitro brain models. Soscia DA; Lam D; Tooker AC; Enright HA; Triplett M; Karande P; Peters SKG; Sales AP; Wheeler EK; Fischer NO Lab Chip; 2020 Mar; 20(5):901-911. PubMed ID: 31976505 [TBL] [Abstract][Full Text] [Related]
6. Spatiotemporal analysis of 3D human iPSC-derived neural networks using a 3D multi-electrode array. Lam D; Enright HA; Cadena J; George VK; Soscia DA; Tooker AC; Triplett M; Peters SKG; Karande P; Ladd A; Bogguri C; Wheeler EK; Fischer NO Front Cell Neurosci; 2023; 17():1287089. PubMed ID: 38026689 [TBL] [Abstract][Full Text] [Related]
7. Effects of mechanical properties of gelatin methacryloyl hydrogels on encapsulated stem cell spheroids for 3D tissue engineering. Kim EM; Lee GM; Lee S; Kim SJ; Lee D; Yoon DS; Joo J; Kong H; Park HH; Shin H Int J Biol Macromol; 2022 Jan; 194():903-913. PubMed ID: 34838857 [TBL] [Abstract][Full Text] [Related]
9. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval. Kim G; Jung Y; Cho K; Lee HJ; Koh WG Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725 [TBL] [Abstract][Full Text] [Related]
10. Extracellular electrophysiology on clonal human β-cell spheroids. Puginier E; Leal-Fischer K; Gaitan J; Lallouet M; Scotti PA; Raoux M; Lang J Front Endocrinol (Lausanne); 2024; 15():1402880. PubMed ID: 38883608 [TBL] [Abstract][Full Text] [Related]
11. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
12. A Critical Review of Microelectrode Arrays and Strategies for Improving Neural Interfaces. Ferguson M; Sharma D; Ross D; Zhao F Adv Healthc Mater; 2019 Oct; 8(19):e1900558. PubMed ID: 31464094 [TBL] [Abstract][Full Text] [Related]
14. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics. Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652 [TBL] [Abstract][Full Text] [Related]
15. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Kim SJ; Byun H; Lee S; Kim E; Lee GM; Huh SJ; Joo J; Shin H Acta Biomater; 2022 Apr; 142():60-72. PubMed ID: 35085797 [TBL] [Abstract][Full Text] [Related]
16. A 3D neuronal network read-out interface with high recording performance using a neuronal cluster patterning on a microelectrode array. Yoon D; Nam Y Biosens Bioelectron; 2024 Oct; 261():116507. PubMed ID: 38905857 [TBL] [Abstract][Full Text] [Related]
17. Highly Customizable 3D Microelectrode Arrays for In Vitro and In Vivo Neuronal Tissue Recordings. Abu Shihada J; Jung M; Decke S; Koschinski L; Musall S; Rincón Montes V; Offenhäusser A Adv Sci (Weinh); 2024 Apr; 11(13):e2305944. PubMed ID: 38240370 [TBL] [Abstract][Full Text] [Related]
18. Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Pelkonen A; Pistono C; Klecki P; Gómez-Budia M; Dougalis A; Konttinen H; Stanová I; Fagerlund I; Leinonen V; Korhonen P; Malm T Cells; 2021 Dec; 11(1):. PubMed ID: 35011667 [TBL] [Abstract][Full Text] [Related]
19. Versatile micro-electrode array to monitor human iPSC derived 3D neural tissues at air-liquid interface. Stoppini L; Heuschkel MO; Loussert-Fonta C; Gomez Baisac L; Roux A Front Cell Neurosci; 2024; 18():1389580. PubMed ID: 38784710 [TBL] [Abstract][Full Text] [Related]
20. Rationally designed β-cyclodextrin-crosslinked polyacrylamide hydrogels for cell spheroid formation and 3D tumor model construction. Chen T; Wen Y; Song X; Zhang Z; Zhu J; Tian X; Zeng S; Li J Carbohydr Polym; 2024 Sep; 339():122253. PubMed ID: 38823920 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]