These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 39413796)

  • 1. Novel multi-omics deconfounding variational autoencoders can obtain meaningful disease subtyping.
    Li Z; Katz S; Saccenti E; Fardo DW; Claes P; Martins Dos Santos VAP; Van Steen K; Roshchupkin GV
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39413796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated multi-omics analysis of ovarian cancer using variational autoencoders.
    Hira MT; Razzaque MA; Angione C; Scrivens J; Sawan S; Sarker M
    Sci Rep; 2021 Mar; 11(1):6265. PubMed ID: 33737557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AVBAE-MODFR: A novel deep learning framework of embedding and feature selection on multi-omics data for pan-cancer classification.
    Li M; Guo H; Wang K; Kang C; Yin Y; Zhang H
    Comput Biol Med; 2024 Jul; 177():108614. PubMed ID: 38796884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data.
    Lemsara A; Ouadfel S; Fröhlich H
    BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategic Multi-Omics Data Integration via Multi-Level Feature Contrasting and Matching.
    Zhang J; Ren H; Jiang Z; Chen Z; Yang Z; Matsubara Y; Sakurai Y
    IEEE Trans Nanobioscience; 2024 Oct; 23(4):579-590. PubMed ID: 39255078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsupervised classification of multi-omics data during cardiac remodeling using deep learning.
    Chung NC; Mirza B; Choi H; Wang J; Wang D; Ping P; Wang W
    Methods; 2019 Aug; 166():66-73. PubMed ID: 30853547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms.
    Rintala TJ; Fortino V
    PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation and comparison of multi-omics data integration methods for cancer subtyping.
    Duan R; Gao L; Gao Y; Hu Y; Xu H; Huang M; Song K; Wang H; Dong Y; Jiang C; Zhang C; Jia S
    PLoS Comput Biol; 2021 Aug; 17(8):e1009224. PubMed ID: 34383739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subtype-WGME enables whole-genome-wide multi-omics cancer subtyping.
    Yang H; Zhao L; Li D; An C; Fang X; Chen Y; Liu J; Xiao T; Wang Z
    Cell Rep Methods; 2024 Jun; 4(6):100781. PubMed ID: 38761803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MODEC: an unsupervised clustering method integrating omics data for identifying cancer subtypes.
    Zhang Y; Kiryu H
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36094092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scMNMF: a novel method for single-cell multi-omics clustering based on matrix factorization.
    Qiu Y; Guo D; Zhao P; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subtype-MGTP: a cancer subtype identification framework based on multi-omics translation.
    Xie M; Kuang Y; Song M; Bao E
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38857453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders.
    Way GP; Greene CS
    Pac Symp Biocomput; 2018; 23():80-91. PubMed ID: 29218871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.