These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39414426)

  • 21. Patient arm position during quantitative bone single-photon emission computed tomography/computed tomography acquisition can affect image quality and quantitative accuracy: a phantom study.
    Miyaji N; Miwa K; Motegi K; Yamashita K; Terauchi T; Onoguchi M
    Nucl Med Commun; 2021 Mar; 42(3):267-275. PubMed ID: 33323866
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of optical blurring of X-ray source on breast tomosynthesis image quality: Modulation transfer function, anatomical noise power spectrum, and signal detectability perspectives.
    Lee C; Baek J
    PLoS One; 2022; 17(5):e0267850. PubMed ID: 35587494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of image quality between step-and-shoot and continuous bed motion techniques in whole-body
    Yamashita S; Yamamoto H; Nakaichi T; Yoneyama T; Yokoyama K
    Ann Nucl Med; 2017 Nov; 31(9):686-695. PubMed ID: 28815414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Simultaneous Dual-radioisotope SPECT Imaging Using (18)F-fluorodeoxyglucose and (99m)Tc-tetrofosmin.
    Takahashi Y; Mochiki M; Koyama K; Ino T; Yamaji H; Kawakami A
    Asia Ocean J Nucl Med Biol; 2016; 4(2):66-71. PubMed ID: 27408894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of Step-and-Shoot and Continuous-Bed-Motion PET Modes of Acquisition for Limited-View Organ Scans.
    Siman W; Kappadath SC
    J Nucl Med Technol; 2017 Dec; 45(4):290-296. PubMed ID: 29042468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The usefulness of SwiftScan technology for bone scintigraphy using a novel anthropomorphic phantom.
    Shibutani T; Onoguchi M; Naoi Y; Yoneyama H; Konishi T; Tatami R; Nakajima K
    Sci Rep; 2021 Jan; 11(1):2644. PubMed ID: 33514818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of patient body habitus on image quality and quantitative value in bone SPECT/CT.
    Fukai S; Daisaki H; Umeda T; Shimada N; Miyaji N; Ito R; Takiguchi T; Terauchi T
    Ann Nucl Med; 2022 Jun; 36(6):586-595. PubMed ID: 35543916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard.
    Rausch I; Cal-González J; Dapra D; Gallowitsch HJ; Lind P; Beyer T; Minear G
    EJNMMI Phys; 2015 Dec; 2(1):26. PubMed ID: 26501827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of Resolution Recovery in Quantitative
    Ismail FS; Mansor S
    J Med Imaging Radiat Sci; 2019 Sep; 50(3):449-453. PubMed ID: 31320272
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of osteoblastic activity in epiphyseal growth plates by quantitative bone SPECT/CT.
    Yamane T; Kuji I; Seto A; Matsunari I
    Skeletal Radiol; 2018 Jun; 47(6):805-810. PubMed ID: 29327129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of reconstruction parameters on quantitative bone SPECT imaging: A novel thoracic spine phantom study.
    Hishikawa M; Matsutomo N; Yamamoto T
    Hell J Nucl Med; 2019; 22 Suppl 2():140. PubMed ID: 31802053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of a new multipurpose whole-body CzT-based camera: comparison with a dual-head Anger camera and first clinical images.
    Desmonts C; Bouthiba MA; Enilorac B; Nganoa C; Agostini D; Aide N
    EJNMMI Phys; 2020 Mar; 7(1):18. PubMed ID: 32185566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of iodine-123 IQ-SPECT/CT imaging compared with conventional SPECT/CT.
    Shibutani T; Onoguchi M; Yoneyama H; Konishi T; Matsuo S; Nakajima K
    Ann Nucl Med; 2019 Feb; 33(2):103-111. PubMed ID: 30324427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.
    Aldridge MD; Waddington WW; Dickson JC; Prakash V; Ell PJ; Bomanji JB
    Nucl Med Commun; 2013 Nov; 34(11):1116-23. PubMed ID: 24056385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical results of a novel wide beam reconstruction method for shortening scan time of Tc-99m cardiac SPECT perfusion studies.
    Borges-Neto S; Pagnanelli RA; Shaw LK; Honeycutt E; Shwartz SC; Adams GL; Coleman RE
    J Nucl Cardiol; 2007 Jul; 14(4):555-65. PubMed ID: 17679065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance evaluation of stationary and semi-stationary acquisition with a non-stationary small animal multi-pinhole SPECT system.
    Lange C; Apostolova I; Lukas M; Huang KP; Hofheinz F; Gregor-Mamoudou B; Brenner W; Buchert R
    Mol Imaging Biol; 2014 Jun; 16(3):311-6. PubMed ID: 24214814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Revisiting gallium-67 imaging: investigation of the energy photopeaks.
    Ali L; Khalil M; Hadi N
    Nucl Med Commun; 2010 Dec; 31(12):1068-74. PubMed ID: 20881893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Image Quality Performance of Virtual Single-Source CT Using Dual-Source Computed Tomography.
    Alikhani B; Werner M; Jamali L; Wacker F; Werncke T
    Acad Radiol; 2019 Aug; 26(8):1095-1101. PubMed ID: 30482627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of Misregistration between SPECT and CT Images on Attenuation Correction for Quantitative Bone SPECT Imaging].
    Sakoshi M; Matsutomo N; Yamamoto T; Sato E
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2018; 74(5):452-458. PubMed ID: 29780044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing Image Quantification for
    Tran-Gia J; Lassmann M
    J Nucl Med; 2018 Apr; 59(4):616-624. PubMed ID: 29097409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.