These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 39415021)

  • 1. Efficient conversion of syngas to linear α-olefins by phase-pure χ-Fe
    Wang P; Chiang FK; Chai J; Dugulan AI; Dong J; Chen W; Broos RJP; Feng B; Song Y; Lv Y; Lin Q; Wang R; Filot IAW; Men Z; Hensen EJM
    Nature; 2024 Nov; 635(8037):102-107. PubMed ID: 39415021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt carbide nanoprisms for direct production of lower olefins from syngas.
    Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H
    Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity.
    Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y
    Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas.
    Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G
    ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Biomass Gasification Mineral Residue as Catalyst to Produce Light Olefins from CO, CO
    Ten Have IC; van den Brink RY; Marie-Rose SC; Meirer F; Weckhuysen BM
    ChemSusChem; 2022 Jun; 15(11):e202200436. PubMed ID: 35294803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
    Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y
    Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity Control by Relay Catalysis in CO and CO
    Cheng K; Li Y; Kang J; Zhang Q; Wang Y
    Acc Chem Res; 2024 Mar; 57(5):714-725. PubMed ID: 38349801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe
    Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear α-olefin production with Na-promoted Fe-Zn catalysts
    Yang S; Lee S; Kang SC; Han SJ; Jun KW; Lee KY; Kim YT
    RSC Adv; 2019 May; 9(25):14176-14187. PubMed ID: 35519344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis.
    Pan X; Jiao F; Miao D; Bao X
    Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of low carbon olefins on a core-shell K-Fe
    Liu Y; Shao W; Zheng Y; Zhang C; Zhou W; Zhang X; Liu Y
    RSC Adv; 2020 Jul; 10(44):26451-26459. PubMed ID: 35519778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins
    Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y
    Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective conversion of syngas to light olefins.
    Jiao F; Li J; Pan X; Xiao J; Li H; Ma H; Wei M; Pan Y; Zhou Z; Li M; Miao S; Li J; Zhu Y; Xiao D; He T; Yang J; Qi F; Fu Q; Bao X
    Science; 2016 Mar; 351(6277):1065-8. PubMed ID: 26941314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.
    Meiri N; Dinburg Y; Amoyal M; Koukouliev V; Nehemya RV; Landau MV; Herskowitz M
    Faraday Discuss; 2015; 183():197-215. PubMed ID: 26444296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Pyrolysis on iron-metal organic frameworks (MOFs) to Fe
    Munir S; Amin M; Iqbal N; Iqbal A; Ghfar AA
    Front Chem; 2023; 11():1150565. PubMed ID: 37113503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Conversion of Syngas to Olefins via Novel Cu-Promoted Fe/RGO and Fe-Mn/RGO Fischer-Tropsch Catalysts: Fixed-Bed Reactor vs Slurry-Bed Reactor.
    Nasser AH; El-Bery HM; ELnaggar H; Basha IK; El-Moneim AA
    ACS Omega; 2021 Nov; 6(46):31099-31111. PubMed ID: 34841152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas.
    Zhu C; Zhang M; Huang C; Han Y; Fang K
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.
    Falkenhagen JP; Maisonneuve L; Paalanen PP; Coste N; Malicki N; Weckhuysen BM
    Chemistry; 2018 Mar; 24(18):4597-4606. PubMed ID: 29493817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Rare Earth Metal Promotion over Zeolite-Supported Fe-Cu-Based Catalysts on the Light Olefin Production Performance in Fischer-Tropsch Synthesis.
    Burgun U; Zonouz HR; Okutan H; Atakül H; Senkan S; Sarioglan A; Gumuslu Gur G
    ACS Omega; 2023 Jan; 8(1):648-662. PubMed ID: 36643472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.