These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 39415021)
21. Effect of the Reactor Material on the Reforming of Primary Syngas. Bezerra Silva C; Lugo-Pimentel M; Ceballos CM; Lavoie JM Molecules; 2024 Oct; 29(21):. PubMed ID: 39519770 [TBL] [Abstract][Full Text] [Related]
22. Role of Zr loading into In Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264 [TBL] [Abstract][Full Text] [Related]
23. Green Process Design for Reductive Hydroformylation of Renewable Olefin Cuts for Drop-In Diesel Fuels. Püschel S; Störtte S; Topphoff J; Vorholt AJ; Leitner W ChemSusChem; 2021 Dec; 14(23):5226-5234. PubMed ID: 34145781 [TBL] [Abstract][Full Text] [Related]
24. Direct production of olefins from syngas with ultrahigh carbon efficiency. Yu H; Wang C; Lin T; An Y; Wang Y; Chang Q; Yu F; Wei Y; Sun F; Jiang Z; Li S; Sun Y; Zhong L Nat Commun; 2022 Oct; 13(1):5987. PubMed ID: 36217004 [TBL] [Abstract][Full Text] [Related]
25. Direct production of olefins Wang X; Lin T; Li J; Yu F; Lv D; Qi X; Wang H; Zhong L; Sun Y RSC Adv; 2019 Jan; 9(8):4131-4139. PubMed ID: 35520170 [TBL] [Abstract][Full Text] [Related]
26. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry. Haibach MC; Kundu S; Brookhart M; Goldman AS Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036 [TBL] [Abstract][Full Text] [Related]
27. Size and Promoter Effects on Stability of Carbon-Nanofiber-Supported Iron-Based Fischer-Tropsch Catalysts. Xie J; Torres Galvis HM; Koeken AC; Kirilin A; Dugulan AI; Ruitenbeek M; de Jong KP ACS Catal; 2016 Jun; 6(6):4017-4024. PubMed ID: 27330847 [TBL] [Abstract][Full Text] [Related]
28. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
29. Catalysts for the Conversion of CO Pawelec B; Guil-López R; Mota N; Fierro JLG; Navarro Yerga RM Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832354 [TBL] [Abstract][Full Text] [Related]
30. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: a review. Abelló S; Montané D ChemSusChem; 2011 Nov; 4(11):1538-56. PubMed ID: 22083868 [TBL] [Abstract][Full Text] [Related]
31. Electrochemical Conversion of CO Tackett BM; Lee JH; Chen JG Acc Chem Res; 2020 Aug; 53(8):1535-1544. PubMed ID: 32662622 [TBL] [Abstract][Full Text] [Related]
32. Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer-Tropsch Synthesis and Reductive Hydroformylation. Jeske K; Rösler T; Belleflamme M; Rodenas T; Fischer N; Claeys M; Leitner W; Vorholt AJ; Prieto G Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201004. PubMed ID: 35491237 [TBL] [Abstract][Full Text] [Related]
33. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Xu Y; Li X; Gao J; Wang J; Ma G; Wen X; Yang Y; Li Y; Ding M Science; 2021 Feb; 371(6529):610-613. PubMed ID: 33542132 [TBL] [Abstract][Full Text] [Related]
34. The importance of both catalyst and process design in unlocking sustainable carbon feedstocks through syngas. Rowsell E; Massingberd-Mundy F; Walker A; Linthwaite M; Skoufa Z; Coe A; Shapcott S; Paterson J Philos Trans A Math Phys Eng Sci; 2024 Nov; 382(2282):20230265. PubMed ID: 39307157 [TBL] [Abstract][Full Text] [Related]
35. Plasma-Driven Efficient Conversion of CO Han Y; Fan G; Guo Y; Guo S; Ding J; Han C; Gao Y; Zhang J; Gu X; Wu L Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202406007. PubMed ID: 38687057 [TBL] [Abstract][Full Text] [Related]
36. Unlocking Syngas Synthesis from the Catalytic Gasification of Lignocellulose Pinewood: Catalytic and Pressure Insights. Tewari K; Balyan S; Jiang C; Robinson B; Bhattacharyya D; Hu J ACS Sustain Chem Eng; 2024 Mar; 12(11):4718-4730. PubMed ID: 38516397 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of stable and low-CO Wang P; Chen W; Chiang FK; Dugulan AI; Song Y; Pestman R; Zhang K; Yao J; Feng B; Miao P; Xu W; Hensen EJM Sci Adv; 2018 Oct; 4(10):eaau2947. PubMed ID: 30333996 [TBL] [Abstract][Full Text] [Related]
38. Effect of graphitic carbon modification on the catalytic performance of Fe@SiO Ni Z; Qin H; Kang S; Bai J; Wang Z; Li Y; Zheng Z; Li X J Colloid Interface Sci; 2018 Apr; 516():16-22. PubMed ID: 29408102 [TBL] [Abstract][Full Text] [Related]
39. Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels. Choi YH; Ra EC; Kim EH; Kim KY; Jang YJ; Kang KN; Choi SH; Jang JH; Lee JS ChemSusChem; 2017 Dec; 10(23):4764-4770. PubMed ID: 29068558 [TBL] [Abstract][Full Text] [Related]
40. Conditions for the Joint Conversion of CO Portillo A; Ateka A; Ereña J; Aguayo AT; Bilbao J Ind Eng Chem Res; 2022 Jul; 61(29):10365-10376. PubMed ID: 35915619 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]