These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 39415026)
1. A split-step finite element method for the space-fractional Schrödinger equation in two dimensions. Zhu X; Wan H; Zhang Y Sci Rep; 2024 Oct; 14(1):24257. PubMed ID: 39415026 [TBL] [Abstract][Full Text] [Related]
2. Leapfrog/finite element method for fractional diffusion equation. Zhao Z; Zheng Y ScientificWorldJournal; 2014; 2014():982413. PubMed ID: 24955431 [TBL] [Abstract][Full Text] [Related]
3. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation. He S; Liu Y; Li H Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527 [TBL] [Abstract][Full Text] [Related]
4. Modified fractional variational iteration method for solving the generalized time-space fractional Schrödinger equation. Hong B; Lu D ScientificWorldJournal; 2014; 2014():964643. PubMed ID: 25276865 [TBL] [Abstract][Full Text] [Related]
6. Numerical simulation of the space dependent fractional Schrödinger equation for London dispersion potential type. Al-Raeei M; El-Daher MS Heliyon; 2020 Jul; 6(7):e04495. PubMed ID: 32715142 [TBL] [Abstract][Full Text] [Related]
7. Maximum norm error estimates of fourth-order compact difference scheme for the nonlinear Schrödinger equation involving a quintic term. Hu H; Hu H J Inequal Appl; 2018; 2018(1):180. PubMed ID: 30137908 [TBL] [Abstract][Full Text] [Related]
8. An efficient computational scheme for solving coupled time-fractional Schrödinger equation via cubic B-spline functions. Mubashir Hayat A; Abbas M; Emadifar H; Alzaidi ASM; Nazir T; Aini Abdullah F PLoS One; 2024; 19(5):e0296909. PubMed ID: 38753667 [TBL] [Abstract][Full Text] [Related]
9. The impact of memory effect on space fractional strong quantum couplers with tunable decay behavior and its numerical simulation. Hendy AS; Zaky MA; Hafez RM; De Staelen RH Sci Rep; 2021 May; 11(1):10275. PubMed ID: 33986406 [TBL] [Abstract][Full Text] [Related]
10. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics. Dumbser M; Balsara DS; Tavelli M; Fambri F Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284 [TBL] [Abstract][Full Text] [Related]
11. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation. Wang J; Li H; He S; Gao W; Liu Y ScientificWorldJournal; 2013; 2013():756281. PubMed ID: 23864831 [TBL] [Abstract][Full Text] [Related]
12. Finite Difference Method for Time-Space Fractional Advection-Diffusion Equations with Riesz Derivative. Arshad S; Baleanu D; Huang J; Al Qurashi MM; Tang Y; Zhao Y Entropy (Basel); 2018 Apr; 20(5):. PubMed ID: 33265411 [TBL] [Abstract][Full Text] [Related]
14. A new implicit high-order iterative scheme for the numerical simulation of the two-dimensional time fractional Cable equation. Khan MA; Alias N; Khan I; Salama FM; Eldin SM Sci Rep; 2023 Jan; 13(1):1549. PubMed ID: 36707653 [TBL] [Abstract][Full Text] [Related]
15. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation. Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342 [TBL] [Abstract][Full Text] [Related]
16. Parallel solver for the time-dependent linear and nonlinear Schrödinger equation. Schneider BI; Collins LA; Hu SX Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036708. PubMed ID: 16605699 [TBL] [Abstract][Full Text] [Related]
17. Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation with artificial boundary conditions. Trofimov VA; Trykin EM PLoS One; 2018; 13(10):e0206235. PubMed ID: 30379875 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of discrete solitons in the fractional discrete nonlinear Schrödinger equation with the quasi-Riesz derivative. Zhong M; Malomed BA; Yan Z Phys Rev E; 2024 Jul; 110(1-1):014215. PubMed ID: 39160901 [TBL] [Abstract][Full Text] [Related]
19. Simulation of crack induced nonlinear elasticity using the combined finite-discrete element method. Gao K; Rougier E; Guyer RA; Lei Z; Johnson PA Ultrasonics; 2019 Sep; 98():51-61. PubMed ID: 31200274 [TBL] [Abstract][Full Text] [Related]
20. Numerical solutions of the time-dependent Schrödinger equation in two dimensions. van Dijk W; Vanderwoerd T; Prins SJ Phys Rev E; 2017 Feb; 95(2-1):023310. PubMed ID: 28298000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]