These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39416910)
1. Metabolic engineering of Sun Q; Liu D; Chen Z Biotechnol Notes; 2023; 4():104-111. PubMed ID: 39416910 [TBL] [Abstract][Full Text] [Related]
2. Metabolic Engineering of Liu Y; Cen X; Liu D; Chen Z ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647 [TBL] [Abstract][Full Text] [Related]
3. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Lian J; Chao R; Zhao H Metab Eng; 2014 May; 23():92-9. PubMed ID: 24525332 [TBL] [Abstract][Full Text] [Related]
4. Engineering and adaptive laboratory evolution of Sun Q; Liu D; Chen Z Front Bioeng Biotechnol; 2022; 10():1089639. PubMed ID: 36704306 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Escherichia coli for biological production of 1, 3-Butanediol. Islam T; Nguyen-Vo TP; Gaur VK; Lee J; Park S Bioresour Technol; 2023 May; 376():128911. PubMed ID: 36934906 [TBL] [Abstract][Full Text] [Related]
6. 2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis. Dias BDC; Lima MEDNV; Vollú RE; da Mota FF; da Silva AJR; de Castro AM; Freire DMG; Seldin L Appl Microbiol Biotechnol; 2018 Oct; 102(20):8773-8782. PubMed ID: 30121751 [TBL] [Abstract][Full Text] [Related]
7. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Nguyen AD; Hwang IY; Lee OK; Kim D; Kalyuzhnaya MG; Mariyana R; Hadiyati S; Kim MS; Lee EY Metab Eng; 2018 May; 47():323-333. PubMed ID: 29673960 [TBL] [Abstract][Full Text] [Related]
8. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic Wang X; Wang X; Lu X; Ma C; Chen K; Ouyang P Biotechnol Biofuels; 2019; 12():17. PubMed ID: 30679956 [TBL] [Abstract][Full Text] [Related]
9. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli. Lee S; Kim B; Park K; Um Y; Lee J Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350 [TBL] [Abstract][Full Text] [Related]
11. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Yim H; Haselbeck R; Niu W; Pujol-Baxley C; Burgard A; Boldt J; Khandurina J; Trawick JD; Osterhout RE; Stephen R; Estadilla J; Teisan S; Schreyer HB; Andrae S; Yang TH; Lee SY; Burk MJ; Van Dien S Nat Chem Biol; 2011 May; 7(7):445-52. PubMed ID: 21602812 [TBL] [Abstract][Full Text] [Related]
12. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875 [TBL] [Abstract][Full Text] [Related]
13. Mixing and matching methylotrophic enzymes to design a novel methanol utilization pathway in E. coli. De Simone A; Vicente CM; Peiro C; Gales L; Bellvert F; Enjalbert B; Heux S Metab Eng; 2020 Sep; 61():315-325. PubMed ID: 32687991 [TBL] [Abstract][Full Text] [Related]
14. Development of an industrial yeast strain for efficient production of 2,3-butanediol. Huo G; Foulquié-Moreno MR; Thevelein JM Microb Cell Fact; 2022 Sep; 21(1):199. PubMed ID: 36175998 [TBL] [Abstract][Full Text] [Related]
15. Regulation of carbon flux and NADH/NAD Lu P; Gao T; Bai R; Yang J; Xu Y; Chu W; Jiang K; Zhang J; Xu F; Zhao H J Biotechnol; 2022 Nov; 358():67-75. PubMed ID: 36087783 [TBL] [Abstract][Full Text] [Related]
16. Engineering a short, aldolase-based pathway for (R)-1,3-butanediol production in Escherichia coli. Nemr K; Müller JEN; Joo JC; Gawand P; Choudhary R; Mendonca B; Lu S; Yu X; Yakunin AF; Mahadevan R Metab Eng; 2018 Jul; 48():13-24. PubMed ID: 29753069 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars. Yang S; Mohagheghi A; Franden MA; Chou YC; Chen X; Dowe N; Himmel ME; Zhang M Biotechnol Biofuels; 2016; 9(1):189. PubMed ID: 27594916 [TBL] [Abstract][Full Text] [Related]
18. Metabolic engineering of Escherichia coli for enhanced production of 1,3-butanediol from glucose. Islam T; Nguyen-Vo TP; Cho S; Lee J; Gaur VK; Park S Bioresour Technol; 2023 Dec; 389():129814. PubMed ID: 37783239 [TBL] [Abstract][Full Text] [Related]
19. Production of 1,4-Butanediol from Succinic Acid Using Escherichia Coli Whole-Cell Catalysis. Ni P; Gao C; Wu J; Song W; Li X; Wei W; Chen X; Liu L Chembiochem; 2024 Jun; 25(11):e202400142. PubMed ID: 38742957 [TBL] [Abstract][Full Text] [Related]
20. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Jantama K; Polyiam P; Khunnonkwao P; Chan S; Sangproo M; Khor K; Jantama SS; Kanchanatawee S Metab Eng; 2015 Jul; 30():16-26. PubMed ID: 25895450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]