These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 39417089)

  • 1. Intrinsically Disordered Compositional Bias in Proteins: Sequence Traits, Region Clustering, and Generation of Hypothetical Functional Associations.
    Harrison PM
    Bioinform Biol Insights; 2024; 18():11779322241287485. PubMed ID: 39417089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Tuning of Intrinsically Disordered Regions in Human Proteins by Composition Bias.
    Kastano K; Mier P; Dosztányi Z; Promponas VJ; Andrade-Navarro MA
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous prion interactions are altered by mutations in the prion protein Rnq1p.
    Bardill JP; True HL
    J Mol Biol; 2009 May; 388(3):583-96. PubMed ID: 19324054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.
    Derkatch IL; Uptain SM; Outeiro TF; Krishnan R; Lindquist SL; Liebman SW
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12934-9. PubMed ID: 15326312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased [PSI+] appearance by fusion of Rnq1 with the prion domain of Sup35 in Saccharomyces cerevisiae.
    Choe YJ; Ryu Y; Kim HJ; Seok YJ
    Eukaryot Cell; 2009 Jul; 8(7):968-76. PubMed ID: 19411620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterologous aggregates promote de novo prion appearance via more than one mechanism.
    Arslan F; Hong JY; Kanneganti V; Park SK; Liebman SW
    PLoS Genet; 2015 Jan; 11(1):e1004814. PubMed ID: 25568955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing strategy for the discovery of compositionally-biased or low-complexity regions in proteins.
    Harrison PM
    Sci Rep; 2024 Jan; 14(1):680. PubMed ID: 38182699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of budding yeast prion-determinant sequences across diverse fungi.
    Harrison LB; Yu Z; Stajich JE; Dietrich FS; Harrison PM
    J Mol Biol; 2007 Apr; 368(1):273-82. PubMed ID: 17320905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Rnq1 protein protects [PSI^(+)] prion from effect of the PNM mutation].
    Bondarev SA; Likholetova DV; Belousov MV; Zhouravleva GA
    Mol Biol (Mosk); 2017; 51(2):367-371. PubMed ID: 28537243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bipolar personality of yeast prion proteins.
    Kurahashi H; Oishi K; Nakamura Y
    Prion; 2011; 5(4):305-10. PubMed ID: 22156730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable absorption of mutational trends by prion-forming domains during
    Harrison PM
    PeerJ; 2020; 8():e9669. PubMed ID: 32844065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements of Hsp104p activity and Sis1p binding for propagation of the [RNQ(+)] prion.
    Bardill JP; Dulle JE; Fisher JR; True HL
    Prion; 2009; 3(3):151-60. PubMed ID: 19770577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation.
    Bondarev SA; Shchepachev VV; Kajava AV; Zhouravleva GA
    J Biol Chem; 2013 Oct; 288(40):28503-13. PubMed ID: 23965990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein.
    Chernoff YO; Galkin AP; Lewitin E; Chernova TA; Newnam GP; Belenkiy SM
    Mol Microbiol; 2000 Feb; 35(4):865-76. PubMed ID: 10692163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous cross-seeding mimics cross-species prion conversion in a yeast model.
    Vishveshwara N; Liebman SW
    BMC Biol; 2009 May; 7():26. PubMed ID: 19470166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].
    Du Z; Li L
    Genetics; 2014 Jun; 197(2):685-700. PubMed ID: 24727082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid cores in prion domains: Key regulators for prion conformational conversion.
    Fernández MR; Batlle C; Gil-García M; Ventura S
    Prion; 2017 Jan; 11(1):31-39. PubMed ID: 28281928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogenic polyglutamine tracts are potent inducers of spontaneous Sup35 and Rnq1 amyloidogenesis.
    Goehler H; Dröge A; Lurz R; Schnoegl S; Chernoff YO; Wanker EE
    PLoS One; 2010 Mar; 5(3):e9642. PubMed ID: 20224794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, function, and amyloidogenesis of fungal prions: filament polymorphism and prion variants.
    Baxa U; Cassese T; Kajava AV; Steven AC
    Adv Protein Chem; 2006; 73():125-80. PubMed ID: 17190613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain.
    Toombs JA; Liss NM; Cobble KR; Ben-Musa Z; Ross ED
    PLoS One; 2011; 6(7):e21953. PubMed ID: 21760933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.