These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 39418078)

  • 21. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses.
    Effendi Y; Jones AM; Scherer GF
    J Exp Bot; 2013 Nov; 64(16):5065-74. PubMed ID: 24052532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth.
    Favero DS; Jacques CN; Iwase A; Le KN; Zhao J; Sugimoto K; Neff MM
    Plant Physiol; 2016 Aug; 171(4):2701-16. PubMed ID: 27342309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temporal control of the Aux/IAA genes BnIAA32 and BnIAA34 mediates Brassica napus dual shade responses.
    Li Y; Guo Y; Cao Y; Xia P; Xu D; Sun N; Jiang L; Dong J
    J Integr Plant Biol; 2024 May; 66(5):928-942. PubMed ID: 37929685
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential petiole growth in Arabidopsis thaliana: photocontrol and hormonal regulation.
    Millenaar FF; Van Zanten M; Cox MCH; Pierik R; Voesenek LACJ; Peeters AJM
    New Phytol; 2009; 184(1):141-152. PubMed ID: 19558423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PIFs coordinate shade avoidance by inhibiting auxin repressor ARF18 and metabolic regulator QQS.
    Jia Y; Kong X; Hu K; Cao M; Liu J; Ma C; Guo S; Yuan X; Zhao S; Robert HS; Li C; Tian H; Ding Z
    New Phytol; 2020 Oct; 228(2):609-621. PubMed ID: 32521046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Auxin and Gibberellins Are Required for the Receptor-Like Kinase ERECTA Regulated Hypocotyl Elongation in Shade Avoidance in Arabidopsis.
    Du J; Jiang H; Sun X; Li Y; Liu Y; Sun M; Fan Z; Cao Q; Feng L; Shang J; Shu K; Liu J; Yang F; Liu W; Yong T; Wang X; Yuan S; Yu L; Liu C; Yang W
    Front Plant Sci; 2018; 9():124. PubMed ID: 29467786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shade suppresses wound-induced leaf repositioning through a mechanism involving PHYTOCHROME KINASE SUBSTRATE (PKS) genes.
    Fiorucci AS; Michaud O; Schmid-Siegert E; Trevisan M; Allenbach Petrolati L; Çaka Ince Y; Fankhauser C
    PLoS Genet; 2022 May; 18(5):e1010213. PubMed ID: 35622862
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants.
    Romano CP; Robson PR; Smith H; Estelle M; Klee H
    Plant Mol Biol; 1995 Mar; 27(6):1071-83. PubMed ID: 7766890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades.
    Keller MM; Jaillais Y; Pedmale UV; Moreno JE; Chory J; Ballaré CL
    Plant J; 2011 Jul; 67(2):195-207. PubMed ID: 21457375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoexcited CRY1 and phyB interact directly with ARF6 and ARF8 to regulate their DNA-binding activity and auxin-induced hypocotyl elongation in Arabidopsis.
    Mao Z; He S; Xu F; Wei X; Jiang L; Liu Y; Wang W; Li T; Xu P; Du S; Li L; Lian H; Guo T; Yang HQ
    New Phytol; 2020 Jan; 225(2):848-865. PubMed ID: 31514232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar.
    Kozuka T; Horiguchi G; Kim GT; Ohgishi M; Sakai T; Tsukaya H
    Plant Cell Physiol; 2005 Jan; 46(1):213-23. PubMed ID: 15659441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature regulation of auxin-related gene expression and its implications for plant growth.
    Bianchimano L; De Luca MB; Borniego MB; Iglesias MJ; Casal JJ
    J Exp Bot; 2023 Dec; 74(22):7015-7033. PubMed ID: 37422862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Auxin-Dependent Cell Elongation During the Shade Avoidance Response.
    Ma L; Li G
    Front Plant Sci; 2019; 10():914. PubMed ID: 31354778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by xyloglucan endotransglucosylase/hydrolases.
    Sasidharan R; Chinnappa CC; Staal M; Elzenga JT; Yokoyama R; Nishitani K; Voesenek LA; Pierik R
    Plant Physiol; 2010 Oct; 154(2):978-90. PubMed ID: 20688978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple links between shade avoidance and auxin networks.
    Iglesias MJ; Sellaro R; Zurbriggen MD; Casal JJ
    J Exp Bot; 2018 Jan; 69(2):213-228. PubMed ID: 29036463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and della proteins in Arabidopsis.
    Pierik R; Djakovic-Petrovic T; Keuskamp DH; de Wit M; Voesenek LA
    Plant Physiol; 2009 Apr; 149(4):1701-12. PubMed ID: 19211699
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arabidopsis transcription factor TCP13 promotes shade avoidance syndrome-like responses by directly targeting a subset of shade-responsive gene promoters.
    Hur YS; Oh J; Kim N; Kim S; Son O; Kim J; Um JH; Ji Z; Kim MH; Ko JH; Ohme-Takagi M; Choi G; Cheon CI
    J Exp Bot; 2024 Jan; 75(1):241-257. PubMed ID: 37824096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels.
    de Wit M; Ljung K; Fankhauser C
    New Phytol; 2015 Oct; 208(1):198-209. PubMed ID: 25963518
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development.
    Takahashi H; Iwakawa H; Ishibashi N; Kojima S; Matsumura Y; Prananingrum P; Iwasaki M; Takahashi A; Ikezaki M; Luo L; Kobayashi T; Machida Y; Machida C
    Plant Cell Physiol; 2013 Mar; 54(3):418-31. PubMed ID: 23396601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves.
    Sun Y; Zhou Q; Zhang W; Fu Y; Huang H
    Planta; 2002 Mar; 214(5):694-702. PubMed ID: 11882937
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.