These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 39418300)

  • 1. DeepPL: A deep-learning-based tool for the prediction of bacteriophage lifecycle.
    Zhang Y; Mao M; Zhang R; Liao YT; Wu VCH
    PLoS Comput Biol; 2024 Oct; 20(10):e1012525. PubMed ID: 39418300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational approaches to predict bacteriophage-host relationships.
    Edwards RA; McNair K; Faust K; Raes J; Dutilh BE
    FEMS Microbiol Rev; 2016 Mar; 40(2):258-72. PubMed ID: 26657537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HostPhinder: A Phage Host Prediction Tool.
    Villarroel J; Kleinheinz KA; Jurtz VI; Zschach H; Lund O; Nielsen M; Larsen MV
    Viruses; 2016 May; 8(5):. PubMed ID: 27153081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophages of the Urinary Microbiome.
    Miller-Ensminger T; Garretto A; Brenner J; Thomas-White K; Zambom A; Wolfe AJ; Putonti C
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29378882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analyses of Bacteriophage Genomes.
    Rossi FPN; Flores VS; Uceda-Campos G; Amgarten DE; Setubal JC; da Silva AM
    Methods Mol Biol; 2024; 2802():427-453. PubMed ID: 38819567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeePhafier: a phage lifestyle classifier using a multilayer self-attention neural network combining protein information.
    Miao Y; Sun Z; Lin C; Gu H; Ma C; Liang Y; Wang G
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39110476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens.
    Sharaf A; Mercati F; Elmaghraby I; Elbaz RM; Marei EM
    BMC Microbiol; 2017 Mar; 17(1):51. PubMed ID: 28257628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repeated outbreaks drive the evolution of bacteriophage communication.
    Doekes HM; Mulder GA; Hermsen R
    Elife; 2021 Jan; 10():. PubMed ID: 33459590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria.
    Gilbert RA; Kelly WJ; Altermann E; Leahy SC; Minchin C; Ouwerkerk D; Klieve AV
    Front Microbiol; 2017; 8():2340. PubMed ID: 29259581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PhaTYP: predicting the lifestyle for bacteriophages using BERT.
    Shang J; Tang X; Sun Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36659812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying Phage Sequences From Metagenomic Data Using Deep Neural Network With Word Embedding and Attention Mechanism.
    Ma L; Deng W; Bai Y; Du Z; Xiao M; Wang L; Li J; Nandi AK
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3772-3785. PubMed ID: 37812548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PhageLeads: Rapid Assessment of Phage Therapeutic Suitability Using an Ensemble Machine Learning Approach.
    Yukgehnaish K; Rajandas H; Parimannan S; Manickam R; Marimuthu K; Petersen B; Clokie MRJ; Millard A; Sicheritz-Pontén T
    Viruses; 2022 Feb; 14(2):. PubMed ID: 35215934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage-bacterial contig association prediction with a convolutional neural network.
    Tang T; Hou S; Fuhrman JA; Sun F
    Bioinformatics; 2022 Jun; 38(Suppl 1):i45-i52. PubMed ID: 35758806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation.
    Zurabov F; Zhilenkov E
    Virol J; 2021 Jan; 18(1):9. PubMed ID: 33407669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seeker: alignment-free identification of bacteriophage genomes by deep learning.
    Auslander N; Gussow AB; Benler S; Wolf YI; Koonin EV
    Nucleic Acids Res; 2020 Dec; 48(21):e121. PubMed ID: 33045744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage hunters: Computational strategies for finding phages in large-scale 'omics datasets.
    Hurwitz BL; Ponsero A; Thornton J; U'Ren JM
    Virus Res; 2018 Jan; 244():110-115. PubMed ID: 29100906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene Co-occurrence Networks Reflect Bacteriophage Ecology and Evolution.
    Shapiro JW; Putonti C
    mBio; 2018 Mar; 9(2):. PubMed ID: 29559574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of temperate phages drives loss of type I CRISPR-Cas systems.
    Rollie C; Chevallereau A; Watson BNJ; Chyou TY; Fradet O; McLeod I; Fineran PC; Brown CM; Gandon S; Westra ER
    Nature; 2020 Feb; 578(7793):149-153. PubMed ID: 31969710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of phage infection types and associated terminology: the problem with 'Lytic or lysogenic'.
    Hobbs Z; Abedon ST
    FEMS Microbiol Lett; 2016 Apr; 363(7):. PubMed ID: 26925588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains.
    Hockenberry AJ; Wilke CO
    PeerJ; 2021; 9():e11396. PubMed ID: 33996289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.