These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39418653)
1. Hard X-ray Photoelectron Spectroscopy Probing Fe Segregation during the Oxygen Evolution Reaction. Longo F; Lloreda-Jurado PJ; Gil-Rostra J; Gonzalez-Elipe AR; Yubero F; Thomä SLJ; Neels A; Borgschulte A ACS Appl Mater Interfaces; 2024 Oct; 16(43):59516-59527. PubMed ID: 39418653 [TBL] [Abstract][Full Text] [Related]
2. Spatially and Chemically Resolved Visualization of Fe Incorporation into NiO Octahedra during the Oxygen Evolution Reaction. Yang F; Lopez Luna M; Haase FT; Escalera-López D; Yoon A; Rüscher M; Rettenmaier C; Jeon HS; Ortega E; Timoshenko J; Bergmann A; Chee SW; Roldan Cuenya B J Am Chem Soc; 2023 Oct; 145(39):21465-21474. PubMed ID: 37726200 [TBL] [Abstract][Full Text] [Related]
3. One-Step Synthesis of Highly Active NiFe Electrocatalysts for the Oxygen Evolution Reaction. Sakamaki A; Yoshida-Hirahara M; Ogihara H; Kurokawa H Langmuir; 2022 May; 38(18):5525-5531. PubMed ID: 35486135 [TBL] [Abstract][Full Text] [Related]
4. Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts. Zhu K; Zhu X; Yang W Angew Chem Int Ed Engl; 2019 Jan; 58(5):1252-1265. PubMed ID: 29665168 [TBL] [Abstract][Full Text] [Related]
5. A core-shell structured CoMoO Wang J; Yin H; Chen Z; Cao G; Xu N; Wu H; Wang P Electrochim Acta; 2020; 345():. PubMed ID: 33654325 [TBL] [Abstract][Full Text] [Related]
6. Engineering Bimetallic NiFe-Based Hydroxides/Selenides Heterostructure Nanosheet Arrays for Highly-Efficient Oxygen Evolution Reaction. Liu C; Han Y; Yao L; Liang L; He J; Hao Q; Zhang J; Li Y; Liu H Small; 2021 Feb; 17(7):e2007334. PubMed ID: 33501753 [TBL] [Abstract][Full Text] [Related]
7. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions. Feng Z; Hong WT; Fong DD; Lee YL; Yacoby Y; Morgan D; Shao-Horn Y Acc Chem Res; 2016 May; 49(5):966-73. PubMed ID: 27149528 [TBL] [Abstract][Full Text] [Related]
8. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. Trotochaud L; Ranney JK; Williams KN; Boettcher SW J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896 [TBL] [Abstract][Full Text] [Related]
9. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Trotochaud L; Young SL; Ranney JK; Boettcher SW J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732 [TBL] [Abstract][Full Text] [Related]
10. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts. Görlin M; Chernev P; Ferreira de Araújo J; Reier T; Dresp S; Paul B; Krähnert R; Dau H; Strasser P J Am Chem Soc; 2016 May; 138(17):5603-14. PubMed ID: 27031737 [TBL] [Abstract][Full Text] [Related]
11. Controllable growth of Fe-doped NiS Zhong M; Song N; Li C; Wang C; Chen W; Lu X J Colloid Interface Sci; 2022 May; 614():556-565. PubMed ID: 35121514 [TBL] [Abstract][Full Text] [Related]
12. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Goldsmith ZK; Harshan AK; Gerken JB; Vörös M; Galli G; Stahl SS; Hammes-Schiffer S Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3050-3055. PubMed ID: 28265083 [TBL] [Abstract][Full Text] [Related]
13. Fast and Deep Reconstruction of Coprecipitated Fe Phosphates on Nickel Foams for an Alkaline Oxygen Evolution Reaction. Duan R; Li Y; Wang S; Gong J; Tong Y; Qi W J Phys Chem Lett; 2022 Feb; 13(6):1446-1452. PubMed ID: 35129340 [TBL] [Abstract][Full Text] [Related]
14. Engineering Active Fe Sites on Nickel-Iron Layered Double Hydroxide through Component Segregation for Oxygen Evolution Reaction. Peng C; Ran N; Wan G; Zhao W; Kuang Z; Lu Z; Sun C; Liu J; Wang L; Chen H ChemSusChem; 2020 Feb; 13(4):811-818. PubMed ID: 31802649 [TBL] [Abstract][Full Text] [Related]
15. Promoting Bifunctional Water Splitting by Modification of the Electronic Structure at the Interface of NiFe Layered Double Hydroxide and Ag. Ma Y; Liu D; Wu H; Li M; Ding S; Hall AS; Xiao C ACS Appl Mater Interfaces; 2021 Jun; 13(22):26055-26063. PubMed ID: 34036787 [TBL] [Abstract][Full Text] [Related]
16. Fluorination-enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation. Xu Q; Jiang H; Duan X; Jiang Z; Hu Y; Boettcher SW; Zhang W; Guo S; Li C Nano Lett; 2021 Jan; 21(1):492-499. PubMed ID: 33258608 [TBL] [Abstract][Full Text] [Related]
17. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe⁴⁺ by Mössbauer Spectroscopy. Chen JY; Dang L; Liang H; Bi W; Gerken JB; Jin S; Alp EE; Stahl SS J Am Chem Soc; 2015 Dec; 137(48):15090-3. PubMed ID: 26601790 [TBL] [Abstract][Full Text] [Related]
18. Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. Etxebarria A; Lopez Luna M; Martini A; Hejral U; Rüscher M; Zhan C; Herzog A; Jamshaid A; Kordus D; Bergmann A; Kuhlenbeck H; Roldan Cuenya B ACS Catal; 2024 Sep; 14(18):14219-14232. PubMed ID: 39324051 [TBL] [Abstract][Full Text] [Related]
19. Optimized NiFe-Based Coordination Polymer Catalysts: Sulfur-Tuning and Operando Monitoring of Water Oxidation. Zhao Y; Wan W; Dongfang N; Triana CA; Douls L; Huang C; Erni R; Iannuzzi M; Patzke GR ACS Nano; 2022 Sep; 16(9):15318-15327. PubMed ID: 36069492 [TBL] [Abstract][Full Text] [Related]
20. Atomic Cation-Vacancy Engineering of NiFe-Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Peng L; Yang N; Yang Y; Wang Q; Xie X; Sun-Waterhouse D; Shang L; Zhang T; Waterhouse GIN Angew Chem Int Ed Engl; 2021 Nov; 60(46):24612-24619. PubMed ID: 34523207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]