These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 39419759)
1. Photocatalytic Seawater Splitting by Earth-Abundant Catalysts: Metal-Semiconductor Metamaterials Made of Plasmonic Magnesium Diboride and Transitional Metal Dichalcogenides. Zhou H; Grigorenko AN; Kravets VG Chemistry; 2024 Oct; ():e202403050. PubMed ID: 39419759 [TBL] [Abstract][Full Text] [Related]
2. Photocatalytic Systems for CO Kumagai H; Tamaki Y; Ishitani O Acc Chem Res; 2022 Apr; 55(7):978-990. PubMed ID: 35255207 [TBL] [Abstract][Full Text] [Related]
3. New class of photocatalytic materials and a novel principle for efficient water splitting under infrared and visible light: MgB Kravets VG; Grigorenko AN Opt Express; 2015 Nov; 23(24):A1651-63. PubMed ID: 26698811 [TBL] [Abstract][Full Text] [Related]
4. Atomic Dispersed Co on NC@Cu Core-Shells for Solar Seawater Splitting. Sun Z; Cheng S; Jing X; Liu K; Chen YL; Wibowo AA; Yin H; Usman M; MacDonald D; Cheong S; Webster RF; Gloag L; Cox N; Tilley RD; Yin Z Adv Mater; 2024 Oct; ():e2406088. PubMed ID: 39402768 [TBL] [Abstract][Full Text] [Related]
5. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts. Zheng Z; Xie W; Huang B; Dai Y Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119 [TBL] [Abstract][Full Text] [Related]
6. Plasmon-promoted electrocatalytic water splitting on metal-semiconductor nanocomposites: the interfacial charge transfer and the real catalytic sites. Du L; Shi G; Zhao Y; Chen X; Sun H; Liu F; Cheng F; Xie W Chem Sci; 2019 Nov; 10(41):9605-9612. PubMed ID: 32055334 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Linic S; Christopher P; Ingram DB Nat Mater; 2011 Nov; 10(12):911-21. PubMed ID: 22109608 [TBL] [Abstract][Full Text] [Related]
8. A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Kochuveedu ST; Jang YH; Kim DH Chem Soc Rev; 2013 Nov; 42(21):8467-93. PubMed ID: 23925494 [TBL] [Abstract][Full Text] [Related]
9. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting. Zhang P; Wang T; Gong J Adv Mater; 2015 Sep; 27(36):5328-42. PubMed ID: 26265309 [TBL] [Abstract][Full Text] [Related]
11. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting. Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945 [TBL] [Abstract][Full Text] [Related]
12. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916 [TBL] [Abstract][Full Text] [Related]
13. Plasmonic hot carrier-driven photoelectrochemical water splitting on antenna-reactor Pt/Ag/TiO Kim H; Park H; Kang M; Park JY J Chem Phys; 2022 Aug; 157(8):084701. PubMed ID: 36050032 [TBL] [Abstract][Full Text] [Related]
14. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO Lee MG; Moon CW; Park H; Sohn W; Kang SB; Lee S; Choi KJ; Jang HW Small; 2017 Oct; 13(37):. PubMed ID: 28834195 [TBL] [Abstract][Full Text] [Related]
15. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H Trang TNQ; Phan TB; Nam ND; Thu VTH ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic Pt nanoparticles-TiO Qin L; Wang G; Tan Y Sci Rep; 2018 Nov; 8(1):16198. PubMed ID: 30385808 [TBL] [Abstract][Full Text] [Related]
17. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel. Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508 [TBL] [Abstract][Full Text] [Related]
18. Recent Advances in the Design of Plasmonic Au/TiO Abed J; Rajput NS; Moutaouakil AE; Jouiad M Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33203122 [TBL] [Abstract][Full Text] [Related]
19. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Jafari T; Moharreri E; Amin AS; Miao R; Song W; Suib SL Molecules; 2016 Jul; 21(7):. PubMed ID: 27409596 [TBL] [Abstract][Full Text] [Related]
20. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. Regulacio MD; Han MY Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]