These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 39420008)

  • 1. Stochastic Boolean model of normal and aberrant cell cycles in budding yeast.
    Taoma K; Tyson JJ; Laomettachit T; Kraikivski P
    NPJ Syst Biol Appl; 2024 Oct; 10(1):121. PubMed ID: 39420008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering novel cell cycle players through the inactivation of securin in budding yeast.
    Sarin S; Ross KE; Boucher L; Green Y; Tyers M; Cohen-Fix O
    Genetics; 2004 Nov; 168(3):1763-71. PubMed ID: 15579722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the START transition in the budding yeast cell cycle.
    Ravi J; Samart K; Zwolak J
    PLoS Comput Biol; 2024 Aug; 20(8):e1012048. PubMed ID: 39093881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic kinase oscillation governs the latching of cell cycle switches.
    Novak B; Tyson JJ
    Curr Biol; 2022 Jun; 32(12):2780-2785.e2. PubMed ID: 35504285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle.
    Laomettachit T; Kraikivski P; Tyson JJ
    Sci Rep; 2022 Nov; 12(1):20302. PubMed ID: 36434030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. At the interface between signaling and executing anaphase--Cdc14 and the FEAR network.
    D'Amours D; Amon A
    Genes Dev; 2004 Nov; 18(21):2581-95. PubMed ID: 15520278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qualitative rather than quantitative phosphoregulation shapes the end of meiosis I in budding yeast.
    Celebic D; Polat I; Legros V; Chevreux G; Wassmann K; Touati SA
    EMBO J; 2024 Apr; 43(7):1325-1350. PubMed ID: 38321267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical genetic profiling of the microtubule-targeting agent peloruside A in budding yeast Saccharomyces cerevisiae.
    Wilmes A; Hanna R; Heathcott RW; Northcote PT; Atkinson PH; Bellows DS; Miller JH
    Gene; 2012 Apr; 497(2):140-6. PubMed ID: 22326528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.
    Barik D; Ball DA; Peccoud J; Tyson JJ
    PLoS Comput Biol; 2016 Dec; 12(12):e1005230. PubMed ID: 27935947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of mitotic exit in budding yeast: the role of Polo kinase.
    Hancioglu B; Tyson JJ
    PLoS One; 2012; 7(2):e30810. PubMed ID: 22383977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic exit from mitosis in budding yeast: model predictions and experimental observations.
    Ball DA; Ahn TH; Wang P; Chen KC; Cao Y; Tyson JJ; Peccoud J; Baumann WT
    Cell Cycle; 2011 Mar; 10(6):999-1009. PubMed ID: 21350333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Logical analysis of the budding yeast cell cycle.
    Irons DJ
    J Theor Biol; 2009 Apr; 257(4):543-59. PubMed ID: 19185585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell cycle molecules and mechanisms of the budding and fission yeasts.
    Humphrey T; Pearce A
    Methods Mol Biol; 2005; 296():3-29. PubMed ID: 15576924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hybrid stochastic model of the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Peccoud J; Cao Y
    NPJ Syst Biol Appl; 2020 Mar; 6(1):7. PubMed ID: 32221305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA; Chen KC; Shaffer CA; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2006 Jan; 153(1):13-21. PubMed ID: 16983831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2.
    Oguz C; Palmisano A; Laomettachit T; Watson LT; Baumann WT; Tyson JJ
    PLoS One; 2014; 9(5):e96726. PubMed ID: 24816736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A stochastic model of size control in the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Cao Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):322. PubMed ID: 31216979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitotic exit in two dimensions.
    Tóth A; Queralt E; Uhlmann F; Novák B
    J Theor Biol; 2007 Oct; 248(3):560-73. PubMed ID: 17659305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layers of regulation of cell-cycle gene expression in the budding yeast Saccharomyces cerevisiae.
    Kelliher CM; Foster MW; Motta FC; Deckard A; Soderblom EJ; Moseley MA; Haase SB
    Mol Biol Cell; 2018 Nov; 29(22):2644-2655. PubMed ID: 30207828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast.
    Godfrey M; Kuilman T; Uhlmann F
    PLoS Genet; 2015 Jan; 11(1):e1004907. PubMed ID: 25569132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.