These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 39420188)

  • 21. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review.
    Badran BW; Dowdle LT; Mithoefer OJ; LaBate NT; Coatsworth J; Brown JC; DeVries WH; Austelle CW; McTeague LM; George MS
    Brain Stimul; 2018; 11(3):492-500. PubMed ID: 29361441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a modulating effect of transcutaneous auricular vagus nerve stimulation (taVNS) on salivary alpha-amylase as indirect noradrenergic marker: A pooled mega-analysis.
    Giraudier M; Ventura-Bort C; Burger AM; Claes N; D'Agostini M; Fischer R; Franssen M; Kaess M; Koenig J; Liepelt R; Nieuwenhuis S; Sommer A; Usichenko T; Van Diest I; von Leupoldt A; Warren CM; Weymar M
    Brain Stimul; 2022; 15(6):1378-1388. PubMed ID: 36183953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of transcutaneous auricular vagus nerve stimulation paired with tones on electrophysiological markers of auditory perception.
    Rufener KS; Wienke C; Salanje A; Haghikia A; Zaehle T
    Brain Stimul; 2023; 16(4):982-989. PubMed ID: 37336282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reassessment of the Effect of Transcutaneous Auricular Vagus Nerve Stimulation Using a Novel Burst Paradigm on Cardiac Autonomic Function in Healthy Young Adults.
    Shen LL; Sun JB; Yang XJ; Deng H; Qin W; Du MY; Meng LX; Li N; Guo XY; Qiao WZ; Yang WQ; Liu P; Zeng X
    Neuromodulation; 2022 Apr; 25(3):433-442. PubMed ID: 35396073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcutaneous auricular vagus nerve stimulation enhances short-latency afferent inhibition via central cholinergic system activation.
    Horinouchi T; Nezu T; Saita K; Date S; Kurumadani H; Maruyama H; Kirimoto H
    Sci Rep; 2024 May; 14(1):11224. PubMed ID: 38755234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Technical Note: Modulation of fMRI brainstem responses by transcutaneous vagus nerve stimulation.
    Borgmann D; Rigoux L; Kuzmanovic B; Edwin Thanarajah S; Münte TF; Fenselau H; Tittgemeyer M
    Neuroimage; 2021 Dec; 244():118566. PubMed ID: 34509623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS).
    Kreisberg E; Esmaeilpour Z; Adair D; Khadka N; Datta A; Badran BW; Bremner JD; Bikson M
    Brain Stimul; 2021; 14(6):1419-1430. PubMed ID: 34517143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcutaneous Auricular Vagus Nerve Stimulation Combined With Slow Breathing: Speculations on Potential Applications and Technical Considerations.
    Szulczewski MT
    Neuromodulation; 2022 Apr; 25(3):380-394. PubMed ID: 35396070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate.
    Badran BW; Mithoefer OJ; Summer CE; LaBate NT; Glusman CE; Badran AW; DeVries WH; Summers PM; Austelle CW; McTeague LM; Borckardt JJ; George MS
    Brain Stimul; 2018; 11(4):699-708. PubMed ID: 29716843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From ear to eye? No effect of transcutaneous vagus nerve stimulation on human pupil dilation: A report of three studies.
    Burger AM; Van der Does W; Brosschot JF; Verkuil B
    Biol Psychol; 2020 Apr; 152():107863. PubMed ID: 32050095
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study.
    Rong P; Liu J; Wang L; Liu R; Fang J; Zhao J; Zhao Y; Wang H; Vangel M; Sun S; Ben H; Park J; Li S; Meng H; Zhu B; Kong J
    J Affect Disord; 2016 May; 195():172-9. PubMed ID: 26896810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigating the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Males.
    Mertens A; Carrette S; Klooster D; Lescrauwaet E; Delbeke J; Wadman WJ; Carrette E; Raedt R; Boon P; Vonck K
    Neuromodulation; 2022 Apr; 25(3):395-406. PubMed ID: 35396071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The efficacy and safety of transcutaneous auricular vagus nerve stimulation in patients with mild cognitive impairment: A double blinded randomized clinical trial.
    Wang L; Zhang J; Guo C; He J; Zhang S; Wang Y; Zhao Y; Li L; Wang J; Hou L; Li S; Wang Y; Hao L; Zhao Y; Wu M; Fang J; Rong P
    Brain Stimul; 2022; 15(6):1405-1414. PubMed ID: 36150665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expiratory-gated Transcutaneous Auricular Vagus Nerve Stimulation (taVNS) does not Further Augment Heart Rate Variability During Slow Breathing at 0.1 Hz.
    Szulczewski MT; D'Agostini M; Van Diest I
    Appl Psychophysiol Biofeedback; 2023 Sep; 48(3):323-333. PubMed ID: 36920567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of transcutaneous auricular vagus nerve stimulation at left cymba concha on experimental pain as assessed with the nociceptive withdrawal reflex, and correlation with parasympathetic activity.
    Yokota H; Edama M; Kawanabe Y; Hirabayashi R; Sekikne C; Akuzawa H; Ishigaki T; Otsuru N; Saito K; Kojima S; Miyaguchi S; Onishi H
    Eur J Neurosci; 2024 May; 59(10):2826-2835. PubMed ID: 38469939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcutaneous auricular vagus nerve stimulation and heart rate variability: Analysis of parameters and targets.
    Machetanz K; Berelidze L; Guggenberger R; Gharabaghi A
    Auton Neurosci; 2021 Dec; 236():102894. PubMed ID: 34662844
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study.
    Sclocco R; Garcia RG; Kettner NW; Isenburg K; Fisher HP; Hubbard CS; Ay I; Polimeni JR; Goldstein J; Makris N; Toschi N; Barbieri R; Napadow V
    Brain Stimul; 2019; 12(4):911-921. PubMed ID: 30803865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Auricular transcutaneous vagus nerve stimulation modulates the heart-evoked potential.
    Poppa T; Benschop L; Horczak P; Vanderhasselt MA; Carrette E; Bechara A; Baeken C; Vonck K
    Brain Stimul; 2022; 15(1):260-269. PubMed ID: 34933143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcutaneous auricular vagus nerve stimulation therapy in patients with cognitively preserved structural focal epilepsy: A case series report.
    Shiraishi H; Egawa K; Murakami K; Nakajima M; Ueda Y; Nakakubo S; Narugami M; Kimura S; Goto T; Hiramatsu Y; Murakami M
    Brain Dev; 2024 Jan; 46(1):49-56. PubMed ID: 37657962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation.
    Sclocco R; Garcia RG; Kettner NW; Fisher HP; Isenburg K; Makarovsky M; Stowell JA; Goldstein J; Barbieri R; Napadow V
    Brain Stimul; 2020; 13(4):970-978. PubMed ID: 32380448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.