These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39420741)

  • 1. Boosting Thermogalvanic Cell Performance through Synergistic Redox and Thermogalvanic Corrosion.
    Fang W; Luo H; Mwakitawa IM; Yuan F; Lin X; Wang Y; Yang H; Shumilova T; Hu L; Zheng Y; Li C; Ouyang J; Sun K
    ChemSusChem; 2024 Oct; ():e202401749. PubMed ID: 39420741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting.
    Han Y; Zhang J; Hu R; Xu D
    Sci Adv; 2022 Feb; 8(7):eabl5318. PubMed ID: 35179966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels.
    Zhang J; Bai C; Wang Z; Liu X; Li X; Cui X
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable and Durable Bacterial Cellulose-Based Thermocell with Improved Thermopower Density for Low-Grade Heat Harvesting.
    Wu Z; Wang B; Li J; Jia Y; Chen S; Wang H; Chen L; Shuai L
    Nano Lett; 2023 Nov; 23(22):10297-10304. PubMed ID: 37955657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance.
    Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R
    Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Antifreezing Thermogalvanic Hydrogels for Human Heat Harvesting in Ultralow Temperature Environments.
    Zhang D; Zhou Y; Mao Y; Li Q; Liu L; Bai P; Ma R
    Nano Lett; 2023 Dec; 23(23):11272-11279. PubMed ID: 38038230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Powered, Non-Toxic, Recyclable Thermogalvanic Hydrogel Sensor for Temperature Monitoring of Edibles.
    Yang K; Bai C; Liu B; Liu Z; Cui X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest.
    Duan J; Feng G; Yu B; Li J; Chen M; Yang P; Feng J; Liu K; Zhou J
    Nat Commun; 2018 Dec; 9(1):5146. PubMed ID: 30514952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recurrently gellable and thermochromic inorganic hydrogel thermogalvanic cells.
    Liu Y; Chen X; Dong X; Liu A; Ouyang K; Huang Y
    Sci Adv; 2024 Jul; 10(30):eadp4533. PubMed ID: 39058781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Powered Respiratory Monitoring Strategy Based on Adaptive Dual-Network Thermogalvanic Hydrogels.
    Li X; Li J; Wang T; Khan SA; Yuan Z; Yin Y; Zhang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48743-48751. PubMed ID: 36269324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells.
    Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G
    Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotropic Effect-Boosted Thermogalvanic Ionogel Thermocells for All-Weather Power Generation.
    Yang M; Hu Y; Wang X; Chen H; Yu J; Li W; Li R; Yan F
    Adv Mater; 2024 Apr; 36(16):e2312249. PubMed ID: 38193634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Giant thermopower of ionic gelatin near room temperature.
    Han CG; Qian X; Li Q; Deng B; Zhu Y; Han Z; Zhang W; Wang W; Feng SP; Chen G; Liu W
    Science; 2020 Jun; 368(6495):1091-1098. PubMed ID: 32354840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production.
    Wang Y; Zhang Y; Xin X; Yang J; Wang M; Wang R; Guo P; Huang W; Sobrido AJ; Wei B; Li X
    Science; 2023 Jul; 381(6655):291-296. PubMed ID: 37471552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells.
    Trosheva MA; Buckingham MA; Aldous L
    Chem Sci; 2022 May; 13(17):4984-4998. PubMed ID: 35655863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally regenerative electrochemically cycled flow batteries with pH neutral electrolytes for harvesting low-grade heat.
    Qian X; Shin J; Tu Y; Zhang JH; Chen G
    Phys Chem Chem Phys; 2021 Oct; 23(39):22501-22514. PubMed ID: 34590664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters.
    Lee CY; Hsu CC; Wang CH; Jeng US; Tung SH; Hu CC; Liu CL
    Small; 2024 Oct; ():e2407622. PubMed ID: 39358979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled monolayers for electrostatic electrocatalysis and enhanced electrode stability in thermogalvanic cells.
    Laws K; Buckingham MA; Aldous L
    Chem Sci; 2024 May; 15(18):6958-6964. PubMed ID: 38725507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass-Derived Sustainable Electrode Material for Low-Grade Heat Harvesting.
    Park J; Kim T
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures.
    Lazar MA; Al-Masri D; MacFarlane DR; Pringle JM
    Phys Chem Chem Phys; 2016 Jan; 18(3):1404-10. PubMed ID: 26348719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.