These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39421220)

  • 1. High-order methods beyond the classical complexity bounds: inexact high-order proximal-point methods.
    Ahookhosh M; Nesterov Y
    Math Program; 2024; 208(1-2):365-407. PubMed ID: 39421220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementable tensor methods in unconstrained convex optimization.
    Nesterov Y
    Math Program; 2021; 186(1):157-183. PubMed ID: 33627889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradient regularization of Newton method with Bregman distances.
    Doikov N; Nesterov Y
    Math Program; 2024; 204(1-2):1-25. PubMed ID: 38371323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local convergence of tensor methods.
    Doikov N; Nesterov Y
    Math Program; 2022; 193(1):315-336. PubMed ID: 35535049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method.
    Doikov N; Nesterov Y
    J Optim Theory Appl; 2021; 189(1):317-339. PubMed ID: 34720181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Restart of the Optimized Gradient Method for Convex Optimization.
    Kim D; Fessler JA
    J Optim Theory Appl; 2018 Jul; 178(1):240-263. PubMed ID: 36341472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indefinite Kernel Logistic Regression With Concave-Inexact-Convex Procedure.
    Liu F; Huang X; Gong C; Yang J; Suykens JAK
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):765-776. PubMed ID: 30047906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations.
    Zhang H; Qian J; Gao J; Yang J; Xu C
    IEEE Trans Neural Netw Learn Syst; 2019 Sep; 30(9):2825-2839. PubMed ID: 30668503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient inexact proximal gradient algorithms for structured sparsity-inducing norm.
    Gu B; Geng X; Li X; Zheng G
    Neural Netw; 2019 Oct; 118():352-362. PubMed ID: 31376633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MUSIC: Accelerated Convergence for Distributed Optimization With Inexact and Exact Methods.
    Wu M; Liao H; Ding Z; Xiao Y
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; PP():. PubMed ID: 38530721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximal Distance Algorithms: Theory and Practice.
    Keys KL; Zhou H; Lange K
    J Mach Learn Res; 2019 Apr; 20():. PubMed ID: 31649491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial forward-backward methods for solving vector optimization problems.
    Boţ RI; Grad SM
    Optimization; 2018; 67(7):959-974. PubMed ID: 30008539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed Stochastic Constrained Composite Optimization Over Time-Varying Network With a Class of Communication Noise.
    Yu Z; Ho DWC; Yuan D; Liu J
    IEEE Trans Cybern; 2023 Jun; 53(6):3561-3573. PubMed ID: 34818207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function.
    Boţ RI; Csetnek ER; Sedlmayer M
    Comput Optim Appl; 2023; 86(3):925-966. PubMed ID: 37969869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Inexact Feasible Quantum Interior Point Method for Linearly Constrained Quadratic Optimization.
    Wu Z; Mohammadisiahroudi M; Augustino B; Yang X; Terlaky T
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A primal-dual algorithm framework for convex saddle-point optimization.
    Zhang B; Zhu Z
    J Inequal Appl; 2017; 2017(1):267. PubMed ID: 29104405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Proximal Alternating Minimization Algorithm for Two-Block Separable Convex Optimization Problems with Linear Constraints.
    Bitterlich S; Boţ RI; Csetnek ER; Wanka G
    J Optim Theory Appl; 2019; 182(1):110-132. PubMed ID: 31258180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Variance Reduction Methods for Riemannian Non-Convex Optimization.
    Han A; Gao J
    IEEE Trans Pattern Anal Mach Intell; 2022 Nov; 44(11):7610-7623. PubMed ID: 34516373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong convergence and bounded perturbation resilience of a modified proximal gradient algorithm.
    Guo Y; Cui W
    J Inequal Appl; 2018; 2018(1):103. PubMed ID: 29755243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model.
    Lin CY; Fessler JA
    IEEE Trans Comput Imaging; 2019 Mar; 5(1):17-26. PubMed ID: 31750391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.