These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 39421247)
1. Assessing fecal metaproteomics workflow and small protein recovery using DDA and DIA PASEF mass spectrometry. Wang A; Fekete EEF; Creskey M; Cheng K; Ning Z; Pfeifle A; Li X; Figeys D; Zhang X Microbiome Res Rep; 2024; 3(3):39. PubMed ID: 39421247 [No Abstract] [Full Text] [Related]
2. Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics. Gómez-Varela D; Xian F; Grundtner S; Sondermann JR; Carta G; Schmidt M Front Microbiol; 2023; 14():1258703. PubMed ID: 37908546 [TBL] [Abstract][Full Text] [Related]
3. Data-Independent Acquisition Mass Spectrometry as a Tool for Metaproteomics: Interlaboratory Comparison Using a Model Microbiome. Rajczewski AT; Blakeley-Ruiz JA; Meyer A; Vintila S; McIlvin MR; Van Den Bossche T; Searle BC; Griffin TJ; Saito MA; Kleiner M; Jagtap PD bioRxiv; 2024 Sep; ():. PubMed ID: 39345414 [TBL] [Abstract][Full Text] [Related]
4. Proteomic datasets of HeLa and SiHa cell lines acquired by DDA-PASEF and diaPASEF. Huang Z; Kong W; Wong BJ; Gao H; Guo T; Liu X; Du X; Wong L; Goh WWB Data Brief; 2022 Apr; 41():107919. PubMed ID: 35198691 [TBL] [Abstract][Full Text] [Related]
5. [Microbial metaproteomics--From sample processing to data acquisition and analysis]. Wu EH; Qiao L Se Pu; 2024 Jul; 42(7):658-668. PubMed ID: 38966974 [TBL] [Abstract][Full Text] [Related]
6. An automated workflow based on data independent acquisition for practical and high-throughput personalized assay development and minimal residual disease monitoring in multiple myeloma patients. Wijnands C; Armony G; Noori S; Gloerich J; Bonifay V; Caillon H; Luider TM; Brehmer S; Pfennig L; Srikumar T; Trede D; Kruppa G; Dejoie T; van Duijn MM; van Gool AJ; Jacobs JFM; Wessels HJCT Clin Chem Lab Med; 2024 Nov; 62(12):2507-2518. PubMed ID: 38872409 [TBL] [Abstract][Full Text] [Related]
7. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF. Mun DG; Budhraja R; Bhat FA; Zenka RM; Johnson KL; Moghekar A; Pandey A Proteomics; 2023 May; 23(10):e2200507. PubMed ID: 36752121 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Data-Dependent Acquisition, Data-Independent Acquisition, and Parallel Reaction Monitoring in Trapped Ion Mobility Spectrometry-Time-of-Flight Tandem Mass Spectrometry-Based Lipidomics. Rudt E; Feldhaus M; Margraf CG; Schlehuber S; Schubert A; Heuckeroth S; Karst U; Jeck V; Meyer SW; Korf A; Hayen H Anal Chem; 2023 Jun; 95(25):9488-9496. PubMed ID: 37307407 [TBL] [Abstract][Full Text] [Related]
9. Enhancement of Proteome Coverage by Ion Mobility Fractionation Coupled to PASEF on a TIMS-QTOF Instrument. Guergues J; Wohlfahrt J; Stevens SM J Proteome Res; 2022 Aug; 21(8):2036-2044. PubMed ID: 35876248 [TBL] [Abstract][Full Text] [Related]
10. Assessing the impact of protein extraction methods for human gut metaproteomics. Zhang X; Li L; Mayne J; Ning Z; Stintzi A; Figeys D J Proteomics; 2018 May; 180():120-127. PubMed ID: 28705725 [TBL] [Abstract][Full Text] [Related]
11. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics. Tanca A; Deledda MA; De Diego L; Abbondio M; Uzzau S mSystems; 2024 Jul; 9(7):e0066124. PubMed ID: 38934547 [TBL] [Abstract][Full Text] [Related]
12. Introducing untargeted data-independent acquisition for metaproteomics of complex microbial samples. Pietilä S; Suomi T; Elo LL ISME Commun; 2022 Jun; 2(1):51. PubMed ID: 37938742 [TBL] [Abstract][Full Text] [Related]
13. MetaPep: A core peptide database for faster human gut metaproteomics database searches. Sun Z; Ning Z; Cheng K; Duan H; Wu Q; Mayne J; Figeys D Comput Struct Biotechnol J; 2023; 21():4228-4237. PubMed ID: 37692080 [TBL] [Abstract][Full Text] [Related]
14. An integrated workflow for enhanced taxonomic and functional coverage of the mouse fecal metaproteome. Nalpas N; Hoyles L; Anselm V; Ganief T; Martinez-Gili L; Grau C; Droste-Borel I; Davidovic L; Altafaj X; Dumas ME; Macek B Gut Microbes; 2021; 13(1):1994836. PubMed ID: 34763597 [TBL] [Abstract][Full Text] [Related]
15. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results. Fernández-Costa C; Martínez-Bartolomé S; McClatchy DB; Saviola AJ; Yu NK; Yates JR J Proteome Res; 2020 Aug; 19(8):3153-3161. PubMed ID: 32510229 [TBL] [Abstract][Full Text] [Related]
16. Comparative Cross-Kingdom DDA- and DIA-PASEF Proteomic Profiling Reveals Novel Determinants of Fungal Virulence and a Putative Druggable Target. Ball B; Sukumaran A; Krieger JR; Geddes-McAlister J J Proteome Res; 2024 Sep; 23(9):3917-3932. PubMed ID: 39140824 [TBL] [Abstract][Full Text] [Related]
17. A novel clinical metaproteomics workflow enables bioinformatic analysis of host-microbe dynamics in disease. Do K; Mehta S; Wagner R; Bhuming D; Rajczewski AT; Skubitz APN; Johnson JE; Griffin TJ; Jagtap PD mSphere; 2024 Jun; 9(6):e0079323. PubMed ID: 38780289 [TBL] [Abstract][Full Text] [Related]
18. A hybrid DDA/DIA-PASEF based assay library for a deep proteotyping of triple-negative breast cancer. Lapcik P; Synkova K; Janacova L; Bouchalova P; Potesil D; Nenutil R; Bouchal P Sci Data; 2024 Jul; 11(1):794. PubMed ID: 39025866 [TBL] [Abstract][Full Text] [Related]
19. High-Abundance Protein-Guided Hybrid Spectral Library for Data-Independent Acquisition Metaproteomics. Wu E; Yang Y; Zhao J; Zheng J; Wang X; Shen C; Qiao L Anal Chem; 2024 Jan; 96(3):1029-1037. PubMed ID: 38180447 [TBL] [Abstract][Full Text] [Related]
20. metaSpectraST: an unsupervised and database-independent analysis workflow for metaproteomic MS/MS data using spectrum clustering. Hao C; Elias JE; Lee PKH; Lam H Microbiome; 2023 Aug; 11(1):176. PubMed ID: 37550758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]