These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 3942205)

  • 1. Passive permeability of human red blood cells to calcium.
    McNamara MK; Wiley JS
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C26-31. PubMed ID: 3942205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cholesterol depletion affects the Ca2+ influx but not the Ca2+ pump in human erythrocytes.
    Rosier F; M'Zali H; Giraud F
    Biochim Biophys Acta; 1986 Dec; 863(2):253-63. PubMed ID: 2431712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium transport mechanisms in dog red blood cells studied from measurements of initial flux rates.
    Altamirano AA; Beaugé L
    Cell Calcium; 1985 Dec; 6(6):503-25. PubMed ID: 3937600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive transport pathways for Ca(2+) and Co(2+) in human red blood cells. (57)Co(2+) as a tracer for Ca(2+) influx.
    Simonsen LO; Harbak H; Bennekou P
    Blood Cells Mol Dis; 2011 Dec; 47(4):214-25. PubMed ID: 21962619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal calcium extrusion capacity and stoichiometry of the human red cell calcium pump.
    Dagher G; Lew VL
    J Physiol; 1988 Dec; 407():569-86. PubMed ID: 3151497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium ions, drug action and the red cell membrane.
    Wiley JS; McCulloch KE
    Pharmacol Ther; 1982; 18(2):271-92. PubMed ID: 6296889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased calcium permeability of cold-stored erythrocytes.
    Wiley JS; McCulloch KE; Bowden DS
    Blood; 1982 Jul; 60(1):92-8. PubMed ID: 7082850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium transport through the amiloride-sensitive Na-Mg pathway of hamster red cells.
    Xu W; Willis JS
    J Membr Biol; 1994 Sep; 141(3):277-87. PubMed ID: 7807526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular adenosine triphosphate increases cation permeability of chronic lymphocytic leukemic lymphocytes.
    Wiley JS; Dubyak GR
    Blood; 1989 Apr; 73(5):1316-23. PubMed ID: 2539215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lanthanum on calcium-dependent phenomena in human red cells.
    Szász I; Sarkadi B; Schubert A; Gárdos G
    Biochim Biophys Acta; 1978 Sep; 512(2):331-40. PubMed ID: 152127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnesium and ATP dependence of K-Cl co-transport in low K+ sheep red blood cells.
    Delpire E; Lauf PK
    J Physiol; 1991 Sep; 441():219-31. PubMed ID: 1816372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irreversible ATP depletion caused by low concentrations of formaldehyde and of calcium-chelator esters in intact human red cells.
    Tiffert T; Garcia-Sancho J; Lew VL
    Biochim Biophys Acta; 1984 Jun; 773(1):143-56. PubMed ID: 6428450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of properties of the Ca2+ influx and of the Ca2+-activated K+ efflux (Gárdos effect) in vanadate-treated and ATP-depleted human red blood cells.
    Kaiserová K; Lakatos B; Peterajová E; Orlický J; Varecka L
    Gen Physiol Biophys; 2002 Dec; 21(4):429-42. PubMed ID: 12693714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a magnesium- and ATP-dependent calcium extrusion pump in dog erythrocytes.
    Brown AM
    Biochim Biophys Acta; 1979 Jun; 554(1):195-203. PubMed ID: 378257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relations between ion shifting, ATP depletion and lactic acid formation in human red cells during moderate calcium loading using the ionophore A 23187.
    Till U; Petermann H; Wenz I; Frunder H
    Acta Biol Med Ger; 1977; 36(3-4):597-610. PubMed ID: 339640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton fluxes associated with the Ca pump in human red blood cells.
    Milanick MA
    Am J Physiol; 1990 Mar; 258(3 Pt 1):C552-62. PubMed ID: 2156439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why is [Ca2+]i increased in blood cells in primary hypertension?
    Bruschi G; Bruschi ME; Orlandini G; Cavatorta A; Borghetti A; Ferrandi M; Bianchi G
    J Hypertens Suppl; 1985 Dec; 3(3):S45-7. PubMed ID: 2856764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The study of Ca2+ influx in human erythrocytes in isotonic polyethylene (glycol) 1500 (PEG-1500) and sucrose media.
    Kucherenko YV; Bernhardt I
    Ukr Biokhim Zh (1999); 2006; 78(6):46-52. PubMed ID: 17494318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous calcium and adenosine triphosphate distribution in calcium-permeabilized human red cells.
    García-Sancho J; Lew VL
    J Physiol; 1988 Dec; 407():523-39. PubMed ID: 3151494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of ionophores of rapid loading of human red cells with radioactive cations for cation-pump studies.
    Sarkadi B; Szász I; Gárdos G
    J Membr Biol; 1976 May; 26(4):357-70. PubMed ID: 58995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.