BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3942207)

  • 1. Co2+, low Ca2+, and verapamil reduce mechanical activity in rat skeletal muscles.
    Kotsias BA; Muchnik S; Obejero Paz CA
    Am J Physiol; 1986 Jan; 250(1 Pt 1):C40-6. PubMed ID: 3942207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of verapamil and Ca free solution on mechanical and electrical properties in fast twitch mammalian skeletal muscle.
    Delbono O; Obejero Paz CA; Muchnik S
    Acta Physiol Pharmacol Latinoam; 1987; 37(4):423-35. PubMed ID: 3274022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Verapamil and zero Ca2+ alter responses of cat muscle to halothane and caffeine.
    Deuster PA; Bockman EL; Biscardi H; Muldoon SM
    J Appl Physiol (1985); 1986 Mar; 60(3):935-41. PubMed ID: 3957844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cobalt, magnesium, and cadmium on contraction of rat soleus muscle.
    Dulhunty AF; Gage PW
    Biophys J; 1989 Jul; 56(1):1-14. PubMed ID: 2752079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-dependent effect of verapamil on rat soleus muscle.
    Kotsias BA; Muchnik S
    Experientia; 1985 Dec; 41(12):1538-40. PubMed ID: 4076398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of contractile responses by some calcium antagonists on external calcium in the skeletal muscle.
    Kawata H; Hatae J
    Jpn J Physiol; 1990; 40(3):337-50. PubMed ID: 2273634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twitch potentiation induced by caffeine in the mouse diaphragm depends on external calcium ions in the absence of potassium ions.
    Nishimura M; Matsushita M; Taquahashi Y; Shimizu Y; Satoh E; Hasegawa T
    Gen Pharmacol; 1997 Nov; 29(5):805-8. PubMed ID: 9347330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Twitch potentiation of frog (Rana japonica) skeletal muscle by antipyrine.
    Fujishiro N; Kawata H
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(1):61-5. PubMed ID: 2566446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Paralysis of frog skeletal muscle fibres by the calcium antagonist D-600.
    Eisenberg RS; McCarthy RT; Milton RL
    J Physiol; 1983 Aug; 341():495-505. PubMed ID: 6604805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium red effect on mechanical and electrical properties of mammalian skeletal muscle.
    Delbono O; Kotsias BA
    Life Sci; 1989; 45(18):1699-708. PubMed ID: 2479803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of calcium antagonists on mechanical responses of mammalian skeletal muscles.
    Gallant EM; Goettl VM
    Eur J Pharmacol; 1985 Nov; 117(2):259-65. PubMed ID: 2416576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure.
    Ertunc M; Sara Y; Korkusuz P; Onur R
    Pharmacology; 2009; 84(4):240-8. PubMed ID: 19776660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of resting membrane potential and intactness of the T-tubules on caffeine contractures in rat skeletal muscle.
    Kotsias BA; Obejero Paz CA; Muchnik S
    Life Sci; 1987 Jun; 40(23):2269-76. PubMed ID: 3586858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of rapid cooling on mechanical and electrical responses in ventricular muscle of guinea-pig.
    Kurihara S; Sakai T
    J Physiol; 1985 Apr; 361():361-78. PubMed ID: 3989731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fast-twitch oxidative-glycolytic muscle with a robust inward calcium current.
    Carlsen RC; Larson DB; Walsh DA
    Can J Physiol Pharmacol; 1985 Aug; 63(8):958-65. PubMed ID: 2416421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of low extracellular calcium and ryanodine on muscle contraction of the mouse during postnatal development.
    Dangain J; Neering IR
    Can J Physiol Pharmacol; 1991 Sep; 69(9):1294-300. PubMed ID: 1756427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium withdrawal contractures in rat soleus muscle fibres.
    Mould J; Dulhunty AF
    Pflugers Arch; 2000 May; 440(1):68-74. PubMed ID: 10863999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contractile dysfunctions in ATP-dependent K+ channel-deficient mouse muscle during fatigue involve excessive depolarization and Ca2+ influx through L-type Ca2+ channels.
    Cifelli C; Boudreault L; Gong B; Bercier JP; Renaud JM
    Exp Physiol; 2008 Oct; 93(10):1126-38. PubMed ID: 18586858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of verapamil on tetanic contractions of frog's skeletal muscle.
    Oz M; Frank GB
    Comp Biochem Physiol Pharmacol Toxicol Endocrinol; 1994 Mar; 107(3):321-9. PubMed ID: 8061938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barium-treated mammalian skeletal muscle: similarities to hypokalaemic periodic paralysis.
    Gallant EM
    J Physiol; 1983 Feb; 335():577-90. PubMed ID: 6308221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.