These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 39422565)

  • 1. Atomization by Acoustic Levitation Facilitates Contactless Microdroplet Reactions.
    Li X; Nong X; Zhu C; Gao X; Chen H; Yuan X; Xing D; Liu L; Liang C; Zang D; Zhang X
    J Am Chem Soc; 2024 Oct; 146(43):29267-29271. PubMed ID: 39422565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillation Dynamics of Multiple Water Droplets Levitated in an Acoustic Field.
    Hasegawa K; Murata M
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36143996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contactless ultrasound droplet manipulation system for mixing chemical reagents.
    Chu YC; Liu PC; Shen SH; Huang MC; Lian HW; Huang CH
    Ultrasonics; 2025 Jan; 145():107472. PubMed ID: 39288720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic Manipulation of Droplets under Reduced Gravity.
    Hasegawa K; Watanabe A; Abe Y
    Sci Rep; 2019 Nov; 9(1):16603. PubMed ID: 31719646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light Droplet Levitation in Relation to Interface Morphology and Liquid Property.
    Jiang P; Chen R; Zhu X; Ye D; Yang Y; Wang H; Li H; Yang Y; Liao Q
    J Phys Chem Lett; 2022 Jun; 13(21):4762-4767. PubMed ID: 35612969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Programmable-Modulated Ultrasonic Transducer Array for Contactless Detection of Viral RNAs.
    Luo Y; Zhou M; Wang L; Fan C; Xu T; Zhang X
    Small Methods; 2023 Sep; 7(9):e2300592. PubMed ID: 37401195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy Water Microdroplet Surface Enriches the Lighter Isotopologue Impurities.
    Nandy A; Mondal S; Koner D; Banerjee S
    J Am Chem Soc; 2024 Jul; 146(28):19050-19058. PubMed ID: 38958201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the Microdroplet Acceleration Factors of Aza-Michael Addition Reactions.
    Song Z; Zhu C; Gong K; Wang R; Zhang J; Zhao S; Li Z; Zhang X; Xie J
    J Am Chem Soc; 2024 Apr; 146(15):10963-10972. PubMed ID: 38567839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contactless transport of matter in the first five resonance modes of a line-focused acoustic manipulator.
    Foresti D; Nabavi M; Poulikakos D
    J Acoust Soc Am; 2012 Feb; 131(2):1029-38. PubMed ID: 22352478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent.
    Qiu L; Cooks RG
    Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202400118. PubMed ID: 38302696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and Orientation of Dye Molecules at the Surface of a Levitated Microdroplet in Air Revealed by Whispering Gallery Mode Resonances.
    Sano M; Kamei K; Yatsuhashi T; Sakota K
    J Phys Chem Lett; 2024 Aug; 15(32):8133-8141. PubMed ID: 39087939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coalescence Dynamics of Acoustically Levitated Droplets.
    Hasegawa K; Watanabe A; Kaneko A; Abe Y
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32224992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TinyLev acoustically levitated water: Direct observation of collective, inter-droplet effects through morphological and thermal analysis of multiple droplets.
    McElligott A; Guerra A; Wood MJ; Rey AD; Kietzig AM; Servio P
    J Colloid Interface Sci; 2022 Aug; 619():84-95. PubMed ID: 35378478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contactless Fluid Manipulation in Air: Droplet Coalescence and Active Mixing by Acoustic Levitation.
    Watanabe A; Hasegawa K; Abe Y
    Sci Rep; 2018 Jul; 8(1):10221. PubMed ID: 29977060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdroplet-Mediated Radical Polymerization.
    Lee K; Lee HR; Kim YH; Park J; Cho S; Li S; Seo M; Choi SQ
    ACS Cent Sci; 2022 Sep; 8(9):1265-1271. PubMed ID: 36188353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation of Lactoferrin Caused by Droplet Atomization Process via a Two-Fluid Nozzle: The Detrimental Effect of Air-Water Interfaces.
    Dao HM; Sahakijpijarn S; Chrostowski RR; Moon C; Mangolini F; Cui Z; Williams RO
    Mol Pharm; 2022 Jul; 19(7):2662-2675. PubMed ID: 35639017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced condensation kinetics in aqueous microdroplets driven by coupled surface reactions and gas-phase partitioning.
    Li M; Yang S; Rathi M; Kumar S; Dutcher CS; Grassian VH
    Chem Sci; 2024 Aug; 15(33):13429-13441. PubMed ID: 39183898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous α-C-H Carboxylation of Ketones by Gaseous CO
    Basuri P; Mukhopadhyay S; Reddy KSSVP; Unni K; Spoorthi BK; Shantha Kumar J; Yamijala SSRKC; Pradeep T
    Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202403229. PubMed ID: 38577991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting the Effect of the Air-Water Interface of Ultrasonically Atomized Water Microdroplets on H
    Nguyen D; Nguyen SC
    J Phys Chem B; 2022 Apr; 126(16):3180-3185. PubMed ID: 35439005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalyst-Free Oxidation of Styrene to Styrene Oxide Using Circulating Microdroplets in an Oxygen Atmosphere.
    Xue L; Chen W; Zheng P; Geng J; Zhang F; Li X; Zhang Z; Hu X
    J Am Chem Soc; 2024 Oct; 146(39):26909-26915. PubMed ID: 39300790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.