These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39423495)
1. Modelling multivariate spatio-temporal data with identifiable variational autoencoders. Sipilä M; Cappello C; De Iaco S; Nordhausen K; Taskinen S Neural Netw; 2024 Oct; 181():106774. PubMed ID: 39423495 [TBL] [Abstract][Full Text] [Related]
2. Improving the explainability of autoencoder factors for commodities through forecast-based Shapley values. Cerqueti R; Iovanella A; Mattera R; Storani S Sci Rep; 2024 Aug; 14(1):19622. PubMed ID: 39179618 [TBL] [Abstract][Full Text] [Related]
3. β-Variational autoencoders and transformers for reduced-order modelling of fluid flows. Solera-Rico A; Sanmiguel Vila C; Gómez-López M; Wang Y; Almashjary A; Dawson STM; Vinuesa R Nat Commun; 2024 Feb; 15(1):1361. PubMed ID: 38355720 [TBL] [Abstract][Full Text] [Related]
4. An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications. Singh A; Ogunfunmi T Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052081 [TBL] [Abstract][Full Text] [Related]
5. Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data. Milano N; Casella M; Esposito R; Marocco D Behav Sci (Basel); 2024 Jun; 14(7):. PubMed ID: 39062350 [TBL] [Abstract][Full Text] [Related]
6. Blind recovery of sources for multivariate space-time random fields. Muehlmann C; De Iaco S; Nordhausen K Stoch Environ Res Risk Assess; 2023; 37(4):1593-1613. PubMed ID: 37041981 [TBL] [Abstract][Full Text] [Related]
7. Nonstationary source separation using sequential and variational Bayesian learning. Chien JT; Hsieh HL IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):681-94. PubMed ID: 24808420 [TBL] [Abstract][Full Text] [Related]
8. Explaining deep learning-based representations of resting state functional connectivity data: focusing on interpreting nonlinear patterns in autism spectrum disorder. Kim YG; Ravid O; Zheng X; Kim Y; Neria Y; Lee S; He X; Zhu X Front Psychiatry; 2024; 15():1397093. PubMed ID: 38832332 [TBL] [Abstract][Full Text] [Related]
15. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations. Shi Z; Zhang H; Jin C; Quan X; Yin Y BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450 [TBL] [Abstract][Full Text] [Related]
16. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys. Jousimo J; Ovaskainen O PLoS One; 2016; 11(9):e0162447. PubMed ID: 27611683 [TBL] [Abstract][Full Text] [Related]
17. Enhancing Models and Measurements of Traffic-Related Air Pollutants for Health Studies Using Dispersion Modeling and Bayesian Data Fusion. Batterman S; Berrocal VJ; Milando C; Gilani O; Arunachalam S; Zhang KM Res Rep Health Eff Inst; 2020 Mar; 2020(202):1-63. PubMed ID: 32239871 [TBL] [Abstract][Full Text] [Related]
18. Distributional Drift Adaptation With Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting. He H; Zhang Q; Yi K; Shi K; Niu Z; Cao L IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38683706 [TBL] [Abstract][Full Text] [Related]
19. VTAE: Variational Transformer Autoencoder With Manifolds Learning. Shamsolmoali P; Zareapoor M; Zhou H; Tao D; Li X IEEE Trans Image Process; 2023; 32():4486-4500. PubMed ID: 37527317 [TBL] [Abstract][Full Text] [Related]