These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 39423495)

  • 1. Modelling multivariate spatio-temporal data with identifiable variational autoencoders.
    Sipilä M; Cappello C; De Iaco S; Nordhausen K; Taskinen S
    Neural Netw; 2024 Oct; 181():106774. PubMed ID: 39423495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the explainability of autoencoder factors for commodities through forecast-based Shapley values.
    Cerqueti R; Iovanella A; Mattera R; Storani S
    Sci Rep; 2024 Aug; 14(1):19622. PubMed ID: 39179618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Variational autoencoders and transformers for reduced-order modelling of fluid flows.
    Solera-Rico A; Sanmiguel Vila C; Gómez-López M; Wang Y; Almashjary A; Dawson STM; Vinuesa R
    Nat Commun; 2024 Feb; 15(1):1361. PubMed ID: 38355720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Overview of Variational Autoencoders for Source Separation, Finance, and Bio-Signal Applications.
    Singh A; Ogunfunmi T
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data.
    Milano N; Casella M; Esposito R; Marocco D
    Behav Sci (Basel); 2024 Jun; 14(7):. PubMed ID: 39062350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blind recovery of sources for multivariate space-time random fields.
    Muehlmann C; De Iaco S; Nordhausen K
    Stoch Environ Res Risk Assess; 2023; 37(4):1593-1613. PubMed ID: 37041981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonstationary source separation using sequential and variational Bayesian learning.
    Chien JT; Hsieh HL
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):681-94. PubMed ID: 24808420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explaining deep learning-based representations of resting state functional connectivity data: focusing on interpreting nonlinear patterns in autism spectrum disorder.
    Kim YG; Ravid O; Zheng X; Kim Y; Neria Y; Lee S; He X; Zhu X
    Front Psychiatry; 2024; 15():1397093. PubMed ID: 38832332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpretable, predictive spatio-temporal models via enhanced pairwise directions estimation.
    Lue HH; Tzeng S
    J Appl Stat; 2023; 50(14):2914-2933. PubMed ID: 37808617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarity-assisted variational autoencoder for nonlinear dimension reduction with application to single-cell RNA sequencing data.
    Kim G; Chun H
    BMC Bioinformatics; 2023 Nov; 24(1):432. PubMed ID: 37964243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear quality-related fault detection using combined deep variational information bottleneck and variational autoencoder.
    Tang P; Peng K; Dong J
    ISA Trans; 2021 Aug; 114():444-454. PubMed ID: 33483094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint variational autoencoders for multimodal imputation and embedding.
    Kalafut NC; Huang X; Wang D
    Nat Mach Intell; 2023 Jun; 5(6):631-642. PubMed ID: 39175596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Mixture Generative Autoencoders.
    Ye F; Bors AG
    IEEE Trans Neural Netw Learn Syst; 2022 Oct; 33(10):5789-5803. PubMed ID: 33872161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward Stepwise Deep Autoencoder-based Monotone Nonlinear Dimensionality Reduction Methods.
    Fong Y; Xu J
    J Comput Graph Stat; 2021; 30(3):519-529. PubMed ID: 34924737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys.
    Jousimo J; Ovaskainen O
    PLoS One; 2016; 11(9):e0162447. PubMed ID: 27611683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Models and Measurements of Traffic-Related Air Pollutants for Health Studies Using Dispersion Modeling and Bayesian Data Fusion.
    Batterman S; Berrocal VJ; Milando C; Gilani O; Arunachalam S; Zhang KM
    Res Rep Health Eff Inst; 2020 Mar; 2020(202):1-63. PubMed ID: 32239871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributional Drift Adaptation With Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting.
    He H; Zhang Q; Yi K; Shi K; Niu Z; Cao L
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; PP():. PubMed ID: 38683706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VTAE: Variational Transformer Autoencoder With Manifolds Learning.
    Shamsolmoali P; Zareapoor M; Zhou H; Tao D; Li X
    IEEE Trans Image Process; 2023; 32():4486-4500. PubMed ID: 37527317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multimodal dynamical variational autoencoder for audiovisual speech representation learning.
    Sadok S; Leglaive S; Girin L; Alameda-Pineda X; Séguier R
    Neural Netw; 2024 Apr; 172():106120. PubMed ID: 38266474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.