These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 39423528)

  • 1. Simultaneous reflectance and fluorescence measurements for portable formaldehyde determination in milk using a multi-channel spectrometer sensor.
    Cadeado ANS; Machado CCS; Silva SG
    Food Chem; 2024 Oct; 464(Pt 1):141583. PubMed ID: 39423528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a portable optical device with a multi-channel spectrometer sensor for quantification of glycerol in wine: a maker approach for on-site analysis.
    Cadeado ANS; Silva SG
    Anal Methods; 2023 Sep; 15(35):4477-4484. PubMed ID: 37575079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect determination of formaldehyde by square-wave voltammetry based on the electrochemical oxidation of 3,5-diacetyl-1,4-dihydrolutidine using an unmodified glassy-carbon electrode.
    Pinto GF; Rocha DP; Richter EM; Muñoz RAA; Silva SG
    Talanta; 2019 Jun; 198():237-241. PubMed ID: 30876556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new formaldehyde optical sensor: Detecting milk adulteration.
    Veríssimo MIS; Gamelas JAF; Fernandes AJS; Evtuguin DV; Gomes MTSR
    Food Chem; 2020 Jul; 318():126461. PubMed ID: 32143129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mass spectrometric method for formaldehyde in children's personal-care products and water via derivatization with acetylacetone.
    Backe WJ
    Rapid Commun Mass Spectrom; 2017 Jun; 31(12):1047-1056. PubMed ID: 28386963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid method to detect and estimate the activity of the enzyme, alcohol oxidase by the use of two chemical complexes - acetylacetone (3,5-diacetyl-1,4-dihydrolutidine) and acetylacetanilide (3,5-di-N-phenylacetyl-1,4-dihydrolutidine).
    Venkatesagowda B; Dekker RFH
    J Microbiol Methods; 2019 Mar; 158():71-79. PubMed ID: 30716345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A derivatization and microextraction procedure with organic phase solidification on a paper template: Spectrofluorometric determination of formaldehyde in milk.
    Kochetkova M; Timofeeva I; Bulatov A
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120160. PubMed ID: 34284279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic Formaldehyde Sensing: Towards On-Chip Integration.
    Mariuta D; Govindaraji A; Colin S; Barrot C; Le Calvé S; Korvink JG; Baldas L; Brandner JJ
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32664311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new electroanalytical methodology for the determination of formaldehyde in wood-based products.
    Dvořák P; Ramos RM; Vyskočil V; Rodrigues JA
    Talanta; 2020 Sep; 217():121068. PubMed ID: 32498846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive emission colorimetric sensor (PECS) for measuring emission rates of formaldehyde based on an enzymatic reaction and reflectance photometry.
    Shinohara N; Kajiwara T; Ohnishi M; Kodama K; Yanagisawa Y
    Environ Sci Technol; 2008 Jun; 42(12):4472-7. PubMed ID: 18605573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line gaseous formaldehyde detection by a microfluidic analytical method based on simultaneous uptake and derivatization in a temperature controlled annular flow.
    Guglielmino M; Bernhardt P; Trocquet C; Serra CA; Le Calvé S
    Talanta; 2017 Sep; 172():102-108. PubMed ID: 28602281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection and quantification of milk adulterants using a nanoclusters-based fluorescent optical tongue.
    Ghohestani E; Tashkhourian J; Hemmateenejad B
    Food Chem; 2024 Oct; 456():139973. PubMed ID: 38852440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploitation of pulsed flows for on-line dispersive liquid-liquid microextraction: Spectrophotometric determination of formaldehyde in milk.
    Nascimento CF; Brasil MA; Costa SP; Pinto PC; Saraiva ML; Rocha FR
    Talanta; 2015 Nov; 144():1189-94. PubMed ID: 26452946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatized flow-batch method for fluorescent determination of free glycerol in biodiesel samples using on-line extraction.
    Lima MB; Insausti M; Domini CE; Pistonesi MF; de Araújo MC; Band BS
    Talanta; 2012 Jan; 89():21-6. PubMed ID: 22284454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensitive flow analysis system for the fluorimetric determination of low levels of formaldehyde in alcoholic beverages.
    de Oliveira FS; Sousa ET; de Andrade JB
    Talanta; 2007 Sep; 73(3):561-6. PubMed ID: 19073071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cholesterol benzoate RRS probe for the determination of trace ammonium ions.
    Lv X; Liao L; Chen S; Xiao Y; Jiang Z; Wen G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120945. PubMed ID: 35151166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and Optimization of an Airborne Formaldehyde Microfluidic Analytical Device Based on Passive Uptake through a Microporous Tube.
    Becker A; Andrikopoulou C; Bernhardt P; Ocampo-Torres R; Trocquet C; Le Calvé S
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31771144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a colorimetric sensor based on the coupling of a microfluidic paper-based analytical device and headspace microextraction for determination of formaldehyde in textile, milk, and wastewater samples.
    Mohammadi V; Saraji M
    Mikrochim Acta; 2023 Dec; 191(1):66. PubMed ID: 38158412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coupled sensor-spectrophotometric device for continuous measurement of formaldehyde in indoor environments.
    Carter EM; Jackson MC; Katz LE; Speitel GE
    J Expo Sci Environ Epidemiol; 2014; 24(3):305-10. PubMed ID: 24084757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of free formaldehyde in cosmetics containing formaldehyde-releasing preservatives by reversed-phase dispersive liquid-liquid microextraction and liquid chromatography with post-column derivatization.
    Miralles P; Chisvert A; Alonso MJ; Hernandorena S; Salvador A
    J Chromatogr A; 2018 Mar; 1543():34-39. PubMed ID: 29478830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.