These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 39424599)

  • 41. Enzymatic conjugation using branched linkers for constructing homogeneous antibody-drug conjugates with high potency.
    Anami Y; Xiong W; Gui X; Deng M; Zhang CC; Zhang N; An Z; Tsuchikama K
    Org Biomol Chem; 2017 Jul; 15(26):5635-5642. PubMed ID: 28649690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tandem-Cleavage Linkers Improve the In Vivo Stability and Tolerability of Antibody-Drug Conjugates.
    Chuprakov S; Ogunkoya AO; Barfield RM; Bauzon M; Hickle C; Kim YC; Yeo D; Zhang F; Rabuka D; Drake PM
    Bioconjug Chem; 2021 Apr; 32(4):746-754. PubMed ID: 33689309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate.
    Sheyi R; de la Torre BG; Albericio F
    Pharmaceutics; 2022 Feb; 14(2):. PubMed ID: 35214128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections.
    Su FY; Srinivasan S; Lee B; Chen J; Convertine AJ; West TE; Ratner DM; Skerrett SJ; Stayton PS
    J Control Release; 2018 Oct; 287():1-11. PubMed ID: 30099019
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Guided molecular missiles for tumor-targeting chemotherapy--case studies using the second-generation taxoids as warheads.
    Ojima I
    Acc Chem Res; 2008 Jan; 41(1):108-19. PubMed ID: 17663526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discovery of Potent and Selective Antibody-Drug Conjugates with Eg5 Inhibitors through Linker and Payload Optimization.
    Karpov AS; Nieto-Oberhuber CM; Abrams T; Beng-Louka E; Blanco E; Chamoin S; Chene P; Dacquignies I; Daniel D; Dillon MP; Doumampouom-Metoul L; Drosos N; Fedoseev P; Furegati M; Granda B; Grotzfeld RM; Hess Clark S; Joly E; Jones D; Lacaud-Baumlin M; Lagasse-Guerro S; Lorenzana EG; Mallet W; Martyniuk P; Marzinzik AL; Mesrouze Y; Nocito S; Oei Y; Perruccio F; Piizzi G; Richard E; Rudewicz PJ; Schindler P; Velay M; Venstrom K; Wang P; Zurini M; Lafrance M
    ACS Med Chem Lett; 2019 Dec; 10(12):1674-1679. PubMed ID: 31857845
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antibody-drug conjugates: recent advances in conjugation and linker chemistries.
    Tsuchikama K; An Z
    Protein Cell; 2018 Jan; 9(1):33-46. PubMed ID: 27743348
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modular approach for theranostic polymer conjugates with activatable fluorescence: Impact of linker design on the stimuli-induced release of doxorubicin.
    Nagel G; Tschiche HR; Wedepohl S; Calderón M
    J Control Release; 2018 Sep; 285():200-211. PubMed ID: 30005907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Site-specifically traced drug release and biodistribution of a paclitaxel-antibody conjugate toward improvement of the linker structure.
    Safavy A; Georg GI; Vander Velde D; Raisch KP; Safavy K; Carpenter M; Wang W; Bonner JA; Khazaeli MB; Buchsbaum DJ
    Bioconjug Chem; 2004; 15(6):1264-74. PubMed ID: 15546192
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of the linker on the biodistribution and catabolism of actinium-225 self-immolative tumor-targeted isotope generators.
    Antczak C; Jaggi JS; LeFave CV; Curcio MJ; McDevitt MR; Scheinberg DA
    Bioconjug Chem; 2006; 17(6):1551-60. PubMed ID: 17105236
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conjugation Site Influences Antibody-Conjugated Drug PK Assays: Case Studies for Disulfide-Linked, Self-Immolating Next-Generation Antibody Drug Conjugates.
    Lee MV; Kaur S; Saad OM
    Anal Chem; 2020 Sep; 92(18):12168-12175. PubMed ID: 32786429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering Enzyme-Cleavable Oligonucleotides by Automated Solid-Phase Incorporation of Cathepsin B Sensitive Dipeptide Linkers.
    Jin C; Ei-Sagheer AH; Li S; Vallis KA; Tan W; Brown T
    Angew Chem Weinheim Bergstr Ger; 2022 Mar; 134(13):e202114016. PubMed ID: 38505643
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved Methodology for the Synthesis of a Cathepsin B Cleavable Dipeptide Linker, Widely Used in Antibody-Drug Conjugate Research.
    Mondal D; Ford J; Pinney KG
    Tetrahedron Lett; 2018 Oct; 59(40):3594-3599. PubMed ID: 31156276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species.
    Excoffier M; Janin-Bussat MC; Beau-Larvor C; Troncy L; Corvaia N; Beck A; Klinguer-Hamour C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Oct; 1032():149-154. PubMed ID: 27267073
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and biological evaluation of RGD peptidomimetic-paclitaxel conjugates bearing lysosomally cleavable linkers.
    Dal Corso A; Caruso M; Belvisi L; Arosio D; Piarulli U; Albanese C; Gasparri F; Marsiglio A; Sola F; Troiani S; Valsasina B; Pignataro L; Donati D; Gennari C
    Chemistry; 2015 Apr; 21(18):6921-9. PubMed ID: 25784522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modular and automated synthesis of oligonucleotide-small molecule conjugates for cathepsin B mediated traceless release of payloads.
    Jin C; Li S; Vallis KA; El-Sagheer AH; Brown T
    RSC Chem Biol; 2024 Jul; 5(8):738-744. PubMed ID: 39092443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Porous Silicon Nanocarriers with Stimulus-Cleavable Linkers for Effective Cancer Therapy.
    Xue Y; Bai H; Peng B; Tieu T; Jiang J; Hao S; Li P; Richardson M; Baell J; Thissen H; Cifuentes A; Li L; Voelcker NH
    Adv Healthc Mater; 2022 Jun; 11(12):e2200076. PubMed ID: 35306736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hydrolyzed N-propionylthiosuccinimide linker is cleaved by metastable fragmentation, increasing reliability of conjugation site identification in conjugate vaccines.
    Ramos-Bermúdez PE; Pousa S; Carvalho P; Brant RSC; Batista M; Hojo H; Garay HE; Roscoe A; Mallón AR; Besada V; Takao T; González LJ
    Rapid Commun Mass Spectrom; 2024 Sep; 38(18):e9859. PubMed ID: 39034666
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single Mutation on Trastuzumab Modulates the Stability of Antibody-Drug Conjugates Built Using Acetal-Based Linkers and Thiol-Maleimide Chemistry.
    Ferhati X; Jiménez-Moreno E; Hoyt EA; Salluce G; Cabeza-Cabrerizo M; Navo CD; Compañón I; Akkapeddi P; Matos MJ; Salaverri N; Garrido P; Martínez A; Laserna V; Murray TV; Jiménez-Osés G; Ravn P; Bernardes GJL; Corzana F
    J Am Chem Soc; 2022 Mar; 144(12):5284-5294. PubMed ID: 35293206
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Site-Dependent Degradation of a Non-Cleavable Auristatin-Based Linker-Payload in Rodent Plasma and Its Effect on ADC Efficacy.
    Dorywalska M; Strop P; Melton-Witt JA; Hasa-Moreno A; Farias SE; Galindo Casas M; Delaria K; Lui V; Poulsen K; Sutton J; Bolton G; Zhou D; Moine L; Dushin R; Tran TT; Liu SH; Rickert M; Foletti D; Shelton DL; Pons J; Rajpal A
    PLoS One; 2015; 10(7):e0132282. PubMed ID: 26161543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.