These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39425356)
1. Reservoir computing with logistic map. Arun R; Sathish Aravindh M; Venkatesan A; Lakshmanan M Phys Rev E; 2024 Sep; 110(3-1):034204. PubMed ID: 39425356 [TBL] [Abstract][Full Text] [Related]
2. Constructing polynomial libraries for reservoir computing in nonlinear dynamical system forecasting. Ren HH; Bai YL; Fan MH; Ding L; Yue XX; Yu QH Phys Rev E; 2024 Feb; 109(2-1):024227. PubMed ID: 38491629 [TBL] [Abstract][Full Text] [Related]
3. Machine-learning potential of a single pendulum. Mandal S; Sinha S; Shrimali MD Phys Rev E; 2022 May; 105(5-1):054203. PubMed ID: 35706182 [TBL] [Abstract][Full Text] [Related]
4. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Zhong Y; Tang J; Li X; Gao B; Qian H; Wu H Nat Commun; 2021 Jan; 12(1):408. PubMed ID: 33462233 [TBL] [Abstract][Full Text] [Related]
5. Novel nondelay-based reservoir computing with a single micromechanical nonlinear resonator for high-efficiency information processing. Sun J; Yang W; Zheng T; Xiong X; Liu Y; Wang Z; Li Z; Zou X Microsyst Nanoeng; 2021; 7():83. PubMed ID: 34691758 [TBL] [Abstract][Full Text] [Related]
6. Reservoir computing with higher-order interactive coupled pendulums. Li X; Small M; Lei Y Phys Rev E; 2023 Dec; 108(6-1):064304. PubMed ID: 38243442 [TBL] [Abstract][Full Text] [Related]
7. Exploiting oscillatory dynamics of delay systems for reservoir computing. Goldmann M; Fischer I; Mirasso CR; C Soriano M Chaos; 2023 Sep; 33(9):. PubMed ID: 37748487 [TBL] [Abstract][Full Text] [Related]
8. Predicting chaotic dynamics from incomplete input via reservoir computing with (D+1)-dimension input and output. Shi L; Yan Y; Wang H; Wang S; Qu SX Phys Rev E; 2023 May; 107(5-1):054209. PubMed ID: 37329034 [TBL] [Abstract][Full Text] [Related]
9. Application of next-generation reservoir computing for predicting chaotic systems from partial observations. Ratas I; Pyragas K Phys Rev E; 2024 Jun; 109(6-1):064215. PubMed ID: 39021034 [TBL] [Abstract][Full Text] [Related]
10. Time series reconstructing using calibrated reservoir computing. Chen Y; Qian Y; Cui X Sci Rep; 2022 Sep; 12(1):16318. PubMed ID: 36175460 [TBL] [Abstract][Full Text] [Related]
11. Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation. Chen P; Liu R; Aihara K; Chen L Nat Commun; 2020 Sep; 11(1):4568. PubMed ID: 32917894 [TBL] [Abstract][Full Text] [Related]
12. Reservoir Computing with Delayed Input for Fast and Easy Optimisation. Jaurigue L; Robertson E; Wolters J; Lüdge K Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945866 [TBL] [Abstract][Full Text] [Related]
13. Brain-Inspired Reservoir Computing Using Memristors with Tunable Dynamics and Short-Term Plasticity. Armendarez NX; Mohamed AS; Dhungel A; Hossain MR; Hasan MS; Najem JS ACS Appl Mater Interfaces; 2024 Feb; 16(5):6176-6188. PubMed ID: 38271202 [TBL] [Abstract][Full Text] [Related]
14. Reservoir computing as digital twins for nonlinear dynamical systems. Kong LW; Weng Y; Glaz B; Haile M; Lai YC Chaos; 2023 Mar; 33(3):033111. PubMed ID: 37003826 [TBL] [Abstract][Full Text] [Related]
15. Reducing network size and improving prediction stability of reservoir computing. Haluszczynski A; Aumeier J; Herteux J; Räth C Chaos; 2020 Jun; 30(6):063136. PubMed ID: 32611106 [TBL] [Abstract][Full Text] [Related]
16. Existence of reservoir with finite-dimensional output for universal reservoir computing. Sugiura S; Ariizumi R; Asai T; Azuma SI Sci Rep; 2024 Apr; 14(1):8448. PubMed ID: 38600157 [TBL] [Abstract][Full Text] [Related]
17. Parameter extraction with reservoir computing: Nonlinear time series analysis and application to industrial maintenance. Thorne B; Jüngling T; Small M; Hodkiewicz M Chaos; 2021 Mar; 31(3):033122. PubMed ID: 33810743 [TBL] [Abstract][Full Text] [Related]
18. Domain-driven models yield better predictions at lower cost than reservoir computers in Lorenz systems. Pyle R; Jovanovic N; Subramanian D; Palem KV; Patel AB Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2194):20200246. PubMed ID: 33583272 [TBL] [Abstract][Full Text] [Related]
19. Good and bad predictions: Assessing and improving the replication of chaotic attractors by means of reservoir computing. Haluszczynski A; Räth C Chaos; 2019 Oct; 29(10):103143. PubMed ID: 31675800 [TBL] [Abstract][Full Text] [Related]