These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39425365)

  • 1. Dynamical critical behavior on the Nishimori point of frustrated Ising models.
    Agrawal R; Cugliandolo LF; Faoro L; Ioffe LB; Picco M
    Phys Rev E; 2024 Sep; 110(3-1):034120. PubMed ID: 39425365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium critical dynamics of the two-dimensional ±J Ising model.
    Agrawal R; Cugliandolo LF; Faoro L; Ioffe LB; Picco M
    Phys Rev E; 2023 Dec; 108(6-1):064131. PubMed ID: 38243541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multicritical Nishimori point in the phase diagram of the +/-J Ising model on a square lattice.
    Hasenbusch M; Toldin FP; Pelissetto A; Vicari E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051115. PubMed ID: 18643034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional Brownian motion of worms in worm algorithms for frustrated Ising magnets.
    Rakala G; Damle K; Dhar D
    Phys Rev E; 2021 Jun; 103(6-1):062101. PubMed ID: 34271608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-temperature ordering dynamics in a two-dimensional biaxial next-nearest-neighbor Ising model.
    Biswas S; Martin Saavedra Contreras M
    Phys Rev E; 2019 Oct; 100(4-1):042129. PubMed ID: 31770882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-temperature dynamics in the two-dimensional axial next-nearest-neighbor Ising model.
    Biswas S; Chandra AK; Sen P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041119. PubMed ID: 18999391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universality class of the Nishimori point in the 2D +/- J random-bond Ising model.
    Honecker A; Picco M; Pujol P
    Phys Rev Lett; 2001 Jul; 87(4):047201. PubMed ID: 11461639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical critical behavior of the two-dimensional three-state Potts model.
    Vatansever E; Barkema GT; Fytas NG
    Phys Rev E; 2024 Jul; 110(1-1):014135. PubMed ID: 39161001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aging following a zero-temperature quench in the d=3 Ising model.
    Gessert D; Christiansen H; Janke W
    Phys Rev E; 2024 Apr; 109(4-1):044148. PubMed ID: 38755941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero-temperature coarsening in the two-dimensional long-range Ising model.
    Christiansen H; Majumder S; Janke W
    Phys Rev E; 2021 May; 103(5-1):052122. PubMed ID: 34134321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minority-spin dynamics in the nonhomogeneous Ising model: Diverging time scales and exponents.
    Mullick P; Sen P
    Phys Rev E; 2016 May; 93(5):052113. PubMed ID: 27300836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of Stochastic Fluid Dynamics near a Critical Point in the Phase Diagram.
    Chattopadhyay C; Ott J; Schäfer T; Skokov VV
    Phys Rev Lett; 2024 Jul; 133(3):032301. PubMed ID: 39094138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state.
    Környei L; Pleimling M; Iglói F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011127. PubMed ID: 18351838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of initial state and final quench temperature on aging properties in phase-ordering kinetics.
    Corberi F; Villavicencio-Sanchez R
    Phys Rev E; 2016 May; 93(5):052105. PubMed ID: 27300828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase diagram and critical exponents of a Potts gauge glass.
    Jacobsen JL; Picco M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026113. PubMed ID: 11863593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic critical exponent z of the three-dimensional Ising universality class: Monte Carlo simulations of the improved Blume-Capel model.
    Hasenbusch M
    Phys Rev E; 2020 Feb; 101(2-1):022126. PubMed ID: 32168572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-time dynamics of an ising system on fractal structures.
    Zheng GP; Li M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6253-9. PubMed ID: 11101957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical real-space renormalization group calculations with a highly connected clustering scheme on disordered networks.
    Balcan D; Erzan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026130. PubMed ID: 15783401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super slowing down in the bond-diluted Ising model.
    Zhong W; Barkema GT; Panja D
    Phys Rev E; 2020 Aug; 102(2-1):022132. PubMed ID: 32942400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature versus nurture: predictability in low-temperature Ising dynamics.
    Ye J; Machta J; Newman CM; Stein DL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):040101. PubMed ID: 24229093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.