These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 39425370)
1. Adaptive coupling between neurons widens the entrainment range of the suprachiasmatic nucleus. Zheng W; Gu C; Yang H; Wang H; Rohling JHT Phys Rev E; 2024 Sep; 110(3-1):034212. PubMed ID: 39425370 [TBL] [Abstract][Full Text] [Related]
2. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus. Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879 [TBL] [Abstract][Full Text] [Related]
3. Dispersion of the intrinsic neuronal periods affects the relationship of the entrainment range to the coupling strength in the suprachiasmatic nucleus. Gu C; Yang H; Wang M Phys Rev E; 2017 Nov; 96(5-1):052207. PubMed ID: 29347798 [TBL] [Abstract][Full Text] [Related]
4. Entrainment range of the suprachiasmatic nucleus affected by the difference in the neuronal amplitudes between the light-sensitive and light-insensitive regions. Gu C; Yang H; Ruan Z Phys Rev E; 2017 Apr; 95(4-1):042409. PubMed ID: 28505726 [TBL] [Abstract][Full Text] [Related]
5. Reduced Plasticity in Coupling Strength in the Aging SCN Clock as Revealed by Kuramoto Modeling. van Beurden AW; Meylahn JM; Achterhof S; Buijink R; Olde Engberink A; Michel S; Meijer JH; Rohling JHT J Biol Rhythms; 2023 Oct; 38(5):461-475. PubMed ID: 37329153 [TBL] [Abstract][Full Text] [Related]
6. Effect of network architecture on synchronization and entrainment properties of the circadian oscillations in the suprachiasmatic nucleus. Hafner M; Koeppl H; Gonze D PLoS Comput Biol; 2012; 8(3):e1002419. PubMed ID: 22423219 [TBL] [Abstract][Full Text] [Related]
7. Single cell model for re-entrainment to a shifted light cycle. van Beurden AW; Schoonderwoerd RA; Tersteeg MMH; de Torres Gutiérrez P; Michel S; Blommers R; Rohling JHT; Meijer JH FASEB J; 2022 Oct; 36(10):e22518. PubMed ID: 36057093 [TBL] [Abstract][Full Text] [Related]
8. The asymmetry of the entrainment range induced by the difference in intrinsic frequencies between two subgroups within the suprachiasmatic nucleus. Gu C; Yang H Chaos; 2017 Jun; 27(6):063115. PubMed ID: 28679229 [TBL] [Abstract][Full Text] [Related]
9. Entrainment range of nonidentical circadian oscillators by a light-dark cycle. Gu C; Xu J; Liu Z; Rohling JH Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022702. PubMed ID: 24032859 [TBL] [Abstract][Full Text] [Related]
10. [Mechanisms of structural plasticity associated with photic synchronization of the circadian clock within the suprachiasmatic nucleus]. Bosler O; Girardet C; Sage-Ciocca D; Jacomy H; François-Bellan AM; Becquet D J Soc Biol; 2009; 203(1):49-63. PubMed ID: 19358811 [TBL] [Abstract][Full Text] [Related]
11. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Meijer JH; Michel S; Vanderleest HT; Rohling JH Eur J Neurosci; 2010 Dec; 32(12):2143-51. PubMed ID: 21143668 [TBL] [Abstract][Full Text] [Related]
12. Photic desynchronization of two subgroups of circadian oscillators in a network model of the suprachiasmatic nucleus with dispersed coupling strengths. Gu C; Liu Z; Schwartz WJ; Indic P PLoS One; 2012; 7(5):e36900. PubMed ID: 22615838 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneity of neuronal properties determines the collective behavior of the neurons in the suprachiasmatic nucleus. Gu CG; Wang P; Weng TF; Yang HJ; Rohling J Math Biosci Eng; 2019 Mar; 16(4):1893-1913. PubMed ID: 31137191 [TBL] [Abstract][Full Text] [Related]
14. Noise Induces Oscillation and Synchronization of the Circadian Neurons. Gu C; Xu J; Rohling J; Yang H; Liu Z PLoS One; 2015; 10(12):e0145360. PubMed ID: 26691765 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic Plasticity of the Circadian Clock in Response to Photoperiod: A Study in Male Melatonin-Competent Mice. Cox OH; Gianonni-Guzmán MA; Cartailler JP; Cottam MA; McMahon DG J Biol Rhythms; 2024 Oct; 39(5):423-439. PubMed ID: 39096022 [TBL] [Abstract][Full Text] [Related]
16. Entrainment of the suprachiasmatic nucleus network by a light-dark cycle. Xu J; Gu C; Pumir A; Garnier N; Liu Z Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041903. PubMed ID: 23214611 [TBL] [Abstract][Full Text] [Related]
17. Network rewiring and plasticity promotes synchronization of suprachiasmatic nucleus neurons. Zhou J; Wang H; Ouyang Q Chaos; 2022 Feb; 32(2):023101. PubMed ID: 35232040 [TBL] [Abstract][Full Text] [Related]
18. The synchronization of neuronal oscillators determined by the directed network structure of the suprachiasmatic nucleus under different photoperiods. Gu C; Tang M; Yang H Sci Rep; 2016 Jun; 6():28878. PubMed ID: 27358024 [TBL] [Abstract][Full Text] [Related]
19. Impact of dispersed coupling strength on the free running periods of circadian rhythms. Gu C; Rohling JH; Liang X; Yang H Phys Rev E; 2016 Mar; 93(3):032414. PubMed ID: 27078397 [TBL] [Abstract][Full Text] [Related]
20. Evidence for Weakened Intercellular Coupling in the Mammalian Circadian Clock under Long Photoperiod. Buijink MR; Almog A; Wit CB; Roethler O; Olde Engberink AH; Meijer JH; Garlaschelli D; Rohling JH; Michel S PLoS One; 2016; 11(12):e0168954. PubMed ID: 28006027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]