These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39426757)
1. VotePLMs-AFP: Identification of antifreeze proteins using transformer-embedding features and ensemble learning. Qi D; Liu T Biochim Biophys Acta Gen Subj; 2024 Dec; 1868(12):130721. PubMed ID: 39426757 [TBL] [Abstract][Full Text] [Related]
2. An Effective Antifreeze Protein Predictor with Ensemble Classifiers and Comprehensive Sequence Descriptors. Yang R; Zhang C; Gao R; Zhang L Int J Mol Sci; 2015 Sep; 16(9):21191-214. PubMed ID: 26370959 [TBL] [Abstract][Full Text] [Related]
3. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information. Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096 [TBL] [Abstract][Full Text] [Related]
4. iAFP-Ense: An Ensemble Classifier for Identifying Antifreeze Protein by Incorporating Grey Model and PSSM into PseAAC. Xiao X; Hui M; Liu Z J Membr Biol; 2016 Dec; 249(6):845-854. PubMed ID: 27812737 [TBL] [Abstract][Full Text] [Related]
5. Improving Antifreeze Proteins Prediction with Protein Language Models and Hybrid Feature Extraction Networks. Wu J; Liu Y; Zhu Y; Yu DJ IEEE/ACM Trans Comput Biol Bioinform; 2024 Sep; PP():. PubMed ID: 39316498 [TBL] [Abstract][Full Text] [Related]
6. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045 [TBL] [Abstract][Full Text] [Related]
7. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs. Usman M; Khan S; Lee JA Sci Rep; 2020 Apr; 10(1):7197. PubMed ID: 32345989 [TBL] [Abstract][Full Text] [Related]
8. RAFP-Pred: Robust Prediction of Antifreeze Proteins Using Localized Analysis of n-Peptide Compositions. Khan S; Naseem I; Togneri R; Bennamoun M IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):244-250. PubMed ID: 28113406 [TBL] [Abstract][Full Text] [Related]
9. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences. Zhao X; Ma Z; Yin M Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447 [TBL] [Abstract][Full Text] [Related]
10. Prediction of antifreeze proteins using machine learning. Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775 [TBL] [Abstract][Full Text] [Related]
11. Accurate Prediction of Antifreeze Protein from Sequences through Natural Language Text Processing and Interpretable Machine Learning Approaches. Dhibar S; Jana B J Phys Chem Lett; 2023 Dec; 14(48):10727-10735. PubMed ID: 38009833 [TBL] [Abstract][Full Text] [Related]
12. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree. Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569 [TBL] [Abstract][Full Text] [Related]
13. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition. He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944 [TBL] [Abstract][Full Text] [Related]
15. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture. Eskandari A; Leow TC; Rahman MBA; Oslan SN Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024 [TBL] [Abstract][Full Text] [Related]
16. Identification of antifreeze proteins and their functional residues by support vector machine and genetic algorithms based on n-peptide compositions. Yu CS; Lu CH PLoS One; 2011; 6(5):e20445. PubMed ID: 21655262 [TBL] [Abstract][Full Text] [Related]
17. afpCOOL: A tool for antifreeze protein prediction. Eslami M; Shirali Hossein Zade R; Takalloo Z; Mahdevar G; Emamjomeh A; Sajedi RH; Zahiri J Heliyon; 2018 Jul; 4(7):e00705. PubMed ID: 30094375 [TBL] [Abstract][Full Text] [Related]
18. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940 [TBL] [Abstract][Full Text] [Related]
19. Predicting antifreeze proteins with weighted generalized dipeptide composition and multi-regression feature selection ensemble. Wang S; Deng L; Xia X; Cao Z; Fei Y BMC Bioinformatics; 2021 Jun; 22(Suppl 3):340. PubMed ID: 34162327 [TBL] [Abstract][Full Text] [Related]
20. PeNGaRoo, a combined gradient boosting and ensemble learning framework for predicting non-classical secreted proteins. Zhang Y; Yu S; Xie R; Li J; Leier A; Marquez-Lago TT; Akutsu T; Smith AI; Ge Z; Wang J; Lithgow T; Song J Bioinformatics; 2020 Feb; 36(3):704-712. PubMed ID: 31393553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]