These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 39427046)
1. A sandwich-type electrochemical sensor based on RGO-CeO Liang J; Liang J; Xiao X; Guo F; Zhan Y; Zhou X; Zhou Z; Li G Mikrochim Acta; 2024 Oct; 191(11):681. PubMed ID: 39427046 [TBL] [Abstract][Full Text] [Related]
2. A label-free electrochemical aptasensor based on platinum@palladium nanoparticles decorated with hemin-reduced graphene oxide as a signal amplifier for glypican-3 determination. Li G; Li W; Li S; Li X; Yao X; Xue W; Liang J; Chen J; Zhou Z Biomater Sci; 2022 Nov; 10(23):6804-6817. PubMed ID: 36317566 [TBL] [Abstract][Full Text] [Related]
3. Sandwich-type supersensitive electrochemical aptasensor of glypican-3 based on PrGO-Hemin-PdNP and AuNP@PoPD. Li G; Guo F; Liang J; Wan B; Liang J; Zhou Z Mikrochim Acta; 2024 May; 191(6):340. PubMed ID: 38787447 [TBL] [Abstract][Full Text] [Related]
4. Glypican-3 electrochemical aptamer nanobiosensor based on hemin/graphene nanohybrids peroxidase-like catalytic silver deposition. Zhou Z; Zhao L; Li W; Chen M; Feng H; Shi X; Liang J; Li G Mikrochim Acta; 2020 Apr; 187(5):305. PubMed ID: 32356075 [TBL] [Abstract][Full Text] [Related]
5. Highly Sensitive Electrochemical Aptasensor for Detection of Glypican-3 Using Hemin-Reduced Graphene Oxide-Platinum Nanoparticles Coupled with Conductive Reduced Graphene Oxide-Gold Nanoparticles. Li G; Li H; Chen W; Chen H; Wu G; Tan M; Liang J; Zhou Z J Biomed Nanotechnol; 2021 Dec; 17(12):2444-2454. PubMed ID: 34974867 [TBL] [Abstract][Full Text] [Related]
6. H-rGO-Pd NPs Nanozyme Enhanced Silver Deposition Strategy for Electrochemical Detection of Glypican-3. Li G; Wang B; Li L; Li X; Yan R; Liang J; Zhou X; Li L; Zhou Z Molecules; 2023 Feb; 28(5):. PubMed ID: 36903516 [TBL] [Abstract][Full Text] [Related]
7. Highly sensitive electrochemical aptasensor for Glypican-3 based on reduced graphene oxide-hemin nanocomposites modified on screen-printed electrode surface. Li G; Feng H; Shi X; Chen M; Liang J; Zhou Z Bioelectrochemistry; 2021 Apr; 138():107696. PubMed ID: 33254049 [TBL] [Abstract][Full Text] [Related]
8. A dual-signal output electrochemical aptasensor for glypican-3 ultrasensitive detection based on reduced graphene oxide-cuprous oxide nanozyme catalytic amplification strategy. Li G; Feng H; Li X; Li S; Liang J; Zhou Z Bioelectrochemistry; 2024 Aug; 158():108709. PubMed ID: 38621313 [TBL] [Abstract][Full Text] [Related]
9. Dual-signal sandwich-type aptasensor based on H-rGO-Mn Li G; Chen M; Wang B; Wang C; Wu G; Liang J; Zhou Z Anal Chim Acta; 2022 Aug; 1221():340102. PubMed ID: 35934348 [TBL] [Abstract][Full Text] [Related]
10. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Liu S; Wang Y; Xu W; Leng X; Wang H; Guo Y; Huang J Biosens Bioelectron; 2017 Feb; 88():181-187. PubMed ID: 27544787 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive Aptasensing Platform for the Detection of β-Amyloid-42 Peptide Based on MOF Containing Bimetallic Porphyrin Graphene Oxide and Gold Nanoparticles. Vajedi FS; Rasoolzadeh R; Angnes L; Santos ECS; Silva LPC ACS Appl Bio Mater; 2024 Apr; 7(4):2218-2239. PubMed ID: 38527228 [TBL] [Abstract][Full Text] [Related]
12. A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor. Li G; Chen W; Mi D; Wang B; Li H; Wu G; Ding P; Liang J; Zhou Z Anal Bioanal Chem; 2022 Sep; 414(22):6441-6453. PubMed ID: 35788872 [TBL] [Abstract][Full Text] [Related]
13. A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites. Xu L; Liu Z; Lei S; Huang D; Zou L; Ye B Mikrochim Acta; 2019 Jun; 186(7):473. PubMed ID: 31243610 [TBL] [Abstract][Full Text] [Related]
14. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Jin H; Zhao C; Gui R; Gao X; Wang Z Anal Chim Acta; 2018 Sep; 1025():154-162. PubMed ID: 29801604 [TBL] [Abstract][Full Text] [Related]
15. An impedimetric aptasensor for ultrasensitive detection of Penicillin G based on the use of reduced graphene oxide and gold nanoparticles. Mohammad-Razdari A; Ghasemi-Varnamkhasti M; Izadi Z; Ensafi AA; Rostami S; Siadat M Mikrochim Acta; 2019 May; 186(6):372. PubMed ID: 31123905 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical aptasensor for ultrasensitive detection of lipopolysaccharide using silver nanoparticles decorated titanium dioxide nanotube/functionalized reduced graphene oxide as a new redox nanoprobe. Tian J; Mu Z; Wang J; Zhou J; Yuan Y; Bai L Mikrochim Acta; 2021 Jan; 188(2):31. PubMed ID: 33415459 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sandwich-type thrombin aptasensor based on dual signal amplification strategy of silver nanowires and hollow Au-CeO Zhang Q; Fan G; Chen W; Liu Q; Zhang X; Zhang X; Liu Q Biosens Bioelectron; 2020 Feb; 150():111846. PubMed ID: 31740255 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical aptasensor based on Ce Yan H; He B; Zhao R; Ren W; Suo Z; Xu Y; Zhang Y; Bai C; Yan H; Liu R J Hazard Mater; 2022 Sep; 438():129491. PubMed ID: 35785741 [TBL] [Abstract][Full Text] [Related]
19. Amperometric sensing of hydrazine in environmental and biological samples by using CeO Huang H; Li T; Sun Y; Yu L; Wang C; Shen R; Ye W; Wang D; Li Y Mikrochim Acta; 2019 Jan; 186(1):46. PubMed ID: 30610467 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical aptasensor based on the target-induced strand displacement strategy-driven for T-2 toxin detection. Zhang Y; He B; Zhao R; Bai C; Zhang Y; Jin H; Wei M; Ren W; Suo Z; Xu Y Sci Total Environ; 2022 Nov; 849():157769. PubMed ID: 35926626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]